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ABSTRACT
Differential privacy (DP) allows data analysts to query databases

that contain users’ sensitive information while providing a provable

privacy guarantee to the users. Recent interactive DP tools such

as APEx provide accuracy guarantees over the query responses,

but may fail to support a large number of queries with a limited

total privacy budget, as they process new incoming queries inde-

pendently from the historical queries. This paper proposes a DP

accuracy-aware inference engine, that maintains a cache of past

responses, and utilizes these responses to save privacy budget for

future queries. To make use of the cache, we design a modified

matrix mechanism and show that it saves privacy budget in our

preliminary experiments.

1 INTRODUCTION
Organizations often collect large datasets that contain users’ sen-

sitive data and permit data analysts to query these datasets for

aggregate statistics. However, responses to these queries may be

used by a curious data analyst to learn an individual’s record. The

Differential Privacy (DP) formulation [4, 5] allows organizations to

provide a guarantee to their users that the presence or absence of

their record in the dataset will only change the distribution of the

query response by a small factor, measured in terms of ϵ . Multiple

query responses can be released and post-processed without break-

ing this privacy guarantee. Statistical organizations such as the US

Census Bureau [13] and companies like Google and Microsoft have

started to adopt differential privacy in their applications.

Existing deployments of differential privacy [1, 2, 10, 12–14]

mainly consider a non-interactive setting, where the analyst pro-

vides queries in advance. Systems [6, 9, 15, 17] that support in-

teractive settings for differentially private data exploration have

been difficult to deploy as data analysts have often been left with

choosing an appropriate privacy budget ϵ per query. Secondly, data
analysts desire a level of query accuracy to be maintained, a con-

straint that traditional differentially private systems do not provide

on their outputs. Ge et al.’s APEx system [7] eliminates these two

drawbacks; data analysts need only specify native queries and ac-

curacy bounds in the form of an error rate α and a probability of

failure β without specifying the privacy budget per query.

However, most database systems that support interactive DP [7,

9, 15], may fail to support a large number of queries under a limited

total privacy budget. As each query consumes some privacy budget,

without proper planning of these queries, the privacy budget will

Example 1: Related queries: (α = 0.1 |D |, β = 0.0005).

Histogram: Q1 = [0, 5000),Q2 = {[0, 2500), [2500, 5000)},

Q3 = {[0, 1250), [1250, 2500), [2500, 3750), [3750, 5000)} . . .

Non-histogram: Q1 = [0, 5000),Q2 = {[0, 2500), [0, 5000)},

Q3 = {[0, 1250), [0, 2500), [0, 3750), [0, 5000)} . . .

Example 2: Disjoint queries: (α = 0.1 |D |, β = 0.0005)

Q1 = [0, 5000),Q2 = [0, 500),Q3 = [500, 1000),

Q4 = [500, 1000) . . .Q11 = [4500, 5000)

Example 3: Same query with higher accuracy requirements.

Q1 = [0, 5000), α = 0.25 |D |, β = 0.0005.

Q2 = [0, 5000), α = 0.125 |D |, β = 0.0005.

Figure 1: Examples of query workloads over a capital gains
attribute that would benefit from our cached approach.

be depleted quickly. Interactive systems such as APEx currently

process each set of queries that have the same accuracy require-

ments, or a workload, independently, without taking into account

the differentially private responses to previous workloads. We ob-

serve that in data exploration, workloads that arrive at different

times can be highly correlated. For example, an analyst may ask a

query that spans the entire domain of a given attribute and then ask

queries that focus on successively smaller parts of the domain (see

Example 1 in Figure 1). Alternatively, their queries may explore the

domain of an attribute sequentially (Example 2). Moreover, after an

analyst sees a noisy response for a given query, they may request a

more accurate response for the same query (Example 3). Our key

insight lies in the observation that processing new workloads while

using previously cached responses saves privacy budget and thus

we can answer more queries, under a given total privacy budget.

In this work, we design CacheDP , an accuracy aware inference

engine for differentially private data exploration. This engine con-

sists of a cache algorithm that interacts with the private data and

data analysts. We integrate this algorithm to an existing accuracy-

aware DP tool, namely APEx, such that the accuracy requirements

of the analyst are met and simultaneously, prior responses are used

to save the privacy budget on a given workload.

Peng et al.’s Pioneer [16] uses historical query answers in order

to obtain accurate responses to upcoming queries over the same or

related predicates. However, our approach has three distinguishing

features. First, we can optimize the privacy budget over multiple

predicates, unlike Pioneer which handles a scalar response one by

one. To achieve this, we adapt the matrix mechanism [12] from a

single workload setting to capture both queries in the cache and



the unanswered queries. In this way, we can spend a much smaller

privacy budget than APEx to achieve the accuracy requirement.

Second, if the same query is asked under a higher accuracy require-

ment, we add correlated noise to improve the accuracy [11]. Third,

we proactively fetch certain query responses at a marginal cost so

that if a user asks for responses to a disjoint query with similar

accuracy requirements later, we do not need to spend any additional

privacy budget.

Our main contributions are:

• We formulate the problem of interactively using historical

query answers to minimize the privacy budget spent.

• We propose a cache-based inference engine and algorithm

that satisfies accuracy requirements interactively.

• We integrate our engine into an existing accuracy-aware

differential privacy tool, namely APEx.

• We provide a preliminary evaluation of our algorithm across

various use-cases to illustrate the savings in the privacy

budget compared to APEx.

2 BACKGROUND
We assume a single-table relational schema R(A1, . . .Ad ). The

domain of an attribute Ai is represented as dom(Ai ). The full

domain of R is dom(R) = dom(A1) × · · · × dom(Ad ). A data-

base instance D of relation R is a multiset whose elements are

tuples in dom(R). A predicate counting query takes a predicate

ϕ : dom(R) → {0, 1} and returns the number of tuples in D that

satisfy ϕ, i.e., ϕ(D) =
∑
t ∈D ϕ(t). Given a database instance D

and Φ = {ϕ1, . . . ,ϕn }, the set of unit length predicates, we can

represent D with a data vector x , where x[i] = ϕi (D). Given x ,
we can represent all linear counting queries as a length-n vector

w = [w1, . . . ,wn ] with wi ∈ {0, 1}. We say that two queries w
and v are disjoint, if w · v = 0. The answer to a linear counting

query is thusw · x . Hence, we can represent a workload of ℓ linear

counting queries as a ℓ × n matrixW over the domain of x and the

response to this workload isWx . We follow the standard definition

of differential privacy (DP).

Definition 2.1 (ϵ-Differential Privacy [4]). A randomized mecha-

nismM : D → O satisfies ϵ-differential privacy if

Pr [M(D) ∈ O] ≤ eϵPr [M(D ′) ∈ O] (1)

for any set of outputsO ⊆ O, and any pair of neighboring databases
D,D ′ such that |D\D ′ ∪ D ′\D | = 1.

Definition 2.2. (Accuracy Bound [7]). Given a DP mechanismM
that answers a workload counting queryW over x , we say thatM
is (α, β)-accurate if for any output ofM , ỹ, we have

Pr [∥Wx − ỹ∥∞ ≥ α] ≤ β

One way to obtain noisy workload response with (α, β)-accuracy
is to use the Laplace mechanism with a specific choice of epsilon.

Definition 2.3 (Laplace Mechanism). For a given ℓ × n workload

matrixW and accuracy requirement (α, β) the Laplace Mechanism

L is defined as

L(W , x,α, β) =Wx + Lap(∥W ∥1/ϵ)
ℓ

where ϵ =
∥W ∥1 ln (1/(1−(1−β )1/ℓ ))

α .

Algorithm 1 System Overview

Require: Dataset D , Total privacy budget B, Proactive Threshold T

1: Initialize privacy loss B ← 0, Cache C ← ∅

2: repeat
3: Receive (Q , α , β ) from analyst

4: W ← getWorkloadMatrix(Q , x )
5: A← ChooseStrategyMatrix(W )

6: ϵ ← EstMatrixCost(W , A, α , β , C)
7: ▼ Get responses for disjoint predicates proactively.

8: W ′ ← GetProactive(W )

9: A′ ← ChooseStrategyMatrix(W ′)
10: ϵ ′ ← EstMatrixCost(W ′, A′, α , β , C)
11: if ϵ ′ ≤ ϵT and ϵ + B < B then
12: (Wi , A, ϵ ) ← (W ′, A′, ϵ ′),
13: if ϵ + B > B then break

14: ỹ , ϵQ ←ModifiedMatrixMechanism(W , A, ϵ , C, x )
15: B ← B + ϵQ
16: return ỹ
17: until No more queries sent by analyst

The Laplace Mechanism as defined above satisfies ϵ-DP whilst

achieving (α, β)-accuracy as shown in A.1 of the APEx Paper [7].

Another way to obtain (α, β)-accurate responses is to use theMatrix

Mechanism [12] using aMonte Carlo (MC) simulation to empirically

bound the accuracy, as in APEx [7].

Definition 2.4 (Matrix Mechanism [12]). Given an ℓ×n workload

matrix W and a strategy matrix A, such that W is some linear

combination of A, the matrix mechanism is defined as

MK ,A(W , x) =WA+K(A, x)

where K(A, x) = Ax + Lap(∥A∥1/ϵ)
|A |

, and |A| denotes the number

of rows in matrix A.

The flexibility of the matrix mechanism comes from different

choices of the strategy matrix A. The Hierarchical Tree inferencer
introduced by Hay et al. [8] can be represented as a strategy matrix

H , as Li et al. point out. Mckenna et al. [14] provide a technique to

optimize the choice of strategy matrix.

3 APPROACH
Given a database instance D and a total privacy budget set by data

owner B, our system receives a sequence of workloads with their

accuracy requirements [. . . , (Q,α, β), . . .]. The workload and its

accuracy requirement will be translated to a differentially private

algorithm that meets the accuracy requirement while minimizing

the privacy budget spent. Our system, CacheDP , is different from
prior work APEx [7] in that we interface CacheDP with a cache in

order to exploit past responses. In this section, we describe how our

system caches responses and uses them to answer each workload

accurately, while saving the privacy budget for future workloads.

3.1 Overview
Our cache C is indexed by the query predicate in the strategy
matrix. For each query predicate, we store a noisy response ỹ that

was drawn from the Laplace distribution, as an intermediate step in

the matrix mechanism (K(A, x)). We also store the noise parameter

b, that was used to obtain ỹ. We present our main algorithm in

Algorithm 1.
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Algorithm 2 Cached Matrix Mechanism

1: function ModifiedMatrixMechanism(W , A, ϵest , C, x )
2: F , P← SplitStrategy(A, C)
3: if F = A then ▷ All predicates are in the cache.

4: ▼ Improve accuracy of cached responses.

5: ỹa , ϵ ← RelaxPrivacy(C, Ax , ϵest ) ▷ ϵ ≤ ϵest
6: updateCache(A, ∥A∥1/ϵ , ỹa )
7: else ▷ At least one predicate is not in the cache.

8: ▼ Use as many cached predicate responses as possible.

9: ỹf← getFromCache(F )
10: ỹp← Px+ Lap(∥P ∥1/ϵest )
11: insertToCache(P , ∥P ∥1/ϵest , ỹp )

12: ỹa ←
[ ỹf
ỹp

]
, ϵ ← ϵest

13: return (WA+ỹa , ϵ )

14: function EstMatrixCost(W , A, α , β , C)

15: Set u =
∥A∥1 ∥WA+ ∥f

α
√
β/2

and l = 0

16: ϵ ← binarySearch(l,u,estimateBeta(·, A,WA+, α , β , C))
17: return ϵ

18: function estimateBeta(ϵ , A,WA+, α , β , C)
19: Sample size N ← 10000 and failure counter nf ← 0

20: F , P← SplitStrategy(A, C)
21: if F = A then ▷ All predicates are in the cache.

22: ▼ Estimate minimum target ϵ by treating F as if it was P .
23: P ← F , F ← ∅
24: for i ∈ [1, . . . , N ] do

25: ηi , j ∼

{
Lap( ∥P ∥1/ϵ ) if A[j] ∈ P
Lap(getFromCache(A[j])) otherwise

26: if ∥(WA+)ηi ∥∞ > α then
27: nf ← nf + 1

28: βe = nf /N , p = β/100
29: δ β = z

1−p/2
√
βe (1 − βe )/N

30: return (βe + δ β + p/2) < β

After receiving a workload Q with accuracy requirement (α, β),
our system generates a corresponding workload matrix represen-

tationW (line 4), such thatW · x computes the query response.

We then obtain a strategy matrix A that can answer all queries

inW , while using as many cached responses as possible (line 5).

Developing such an optimally cache-aware strategy matrix is left

to future work. We treat this function as a blackbox for our initial

analysis and illustrate examples of such strategy matrices for our

experiments in the evaluation. We then estimate the minimum pri-

vacy budget required to answer queries using this strategy matrix,

along with the cache C (line 6).

Our system then attempts to proactively fetch responses for

queries whose predicates are disjoint with the new workload (lines

8–12), using the minimal privacy budget that is needed to answer

them accurately. For example, if the data analyst queries the num-

ber of people with capital gain from 0 to 2500, we may expect that

counts over other disjoint ranges at the same granularity, such as

[2500,5000), [5000,7500) etc. would be relevant for the analyst in

future queries. Hence, we modify the workload matrixW toW ′ as
if the analyst also requested these other disjoint predicates, through

the GetProactive function (line 8). We then again choose a strat-

egy matrix that optimally uses the cache to answer the predicates

inW ′ (line 9). Under our accuracy definition 2.2, when the number

of predicates increases, the cost of obtaining noisy responses to

these predicates increases slightly. Thus, we ensure that the privacy

budget for the proactiveW ′ is within a multiplicative factor Tof

the original budget estimate ϵ (lines 10–12).

We check that the privacy budget spent is less than the remain-

ing privacy budget irrespective of whether we proactively cache

query responses or not (line 13). We thus provide B-differential

privacy, just as APEx does. We finally execute our modified matrix
mechanism, with the chosen strategy matrix A under the privacy

budget ϵ , which was estimated to provide the (α, β) guarantee. We

obtain the response ỹ, which answersW , and the actual privacy

budget spent ϵQ (line 14) and we update the cumulative privacy

budget (line 15). We now proceed to discuss the modified matrix

mechanism function, which is presented in Algorithm 2. We re-

mark that the cost estimation function for the matrix mechanism

is similar to the original function in APEx. Only the implementa-

tion of the Monte Carlo simulation, encapsulated in the call to the

estimateBeta function, is modified to be cache-aware and is also

discussed below.

3.2 Cached Matrix Mechanism
Unlike the matrix mechanism in prior work [7, 12], the new mech-

anism and its cost estimation function, take in the cache C as input.

We partition the strategy matrixA into two parts based on whether

the predicate exists in the cache. That is, if the predicate belongs

to the cache, it is in the free matrix F , otherwise it is in the ma-

trix to be fetched from the database P (line 2). If noisy responses

for all of the predicates in the strategy matrix are present in the

cache (line 3), then our modified mechanism improves the accuracy

of these noisy responses to satisfy the analyst’s accuracy bounds.

Otherwise, we use as many cached responses as possible to answer

the query and use a lower privacy budget to noise all non-cached

predicates, P . For each case, we describe the relevant parts of the

modifiedMatrixMechanism and estimateBeta functions below.

In the first case, we estimate the least privacy cost ϵest required
to answer these queries without the cache. This is achieved by

treating all the queries found in the cache F as new queries P (lines

21–23 and second case of line 25) in the function estimateBeta.

That is, all cached responses should meet the target epsilon ϵest
in order to be sufficiently accurate. To improve the accuracy of

cached responses while minimizing the privacy budget spent, we

apply a similar technique as the relaxPrivacy function in APEx,

which was based on Koufogiannis et al.’s work [11]. The new noisy

response ỹp is correlated with the old response in the cache and

the new privacy budget spent here, ϵ , is less than ϵest . However,
in contrast with APEx, each of these cached responses may be

obtained across different workloads, and hence the privacy budget

for each response may be different. For such cases, we leave a

careful analysis of the new privacy loss to the full paper. We also

update the cache with these more accurate responses (lines 5–6).

On the other hand, if the noisy response for at least one of the
predicates in the strategy matrix is absent from the cache (F ⊂ A),
then our mechanism fetches the noisy responses ỹf for the cached

3



Figure 2: We consider the histogram workload sequence shown in Example 1 of Figure 1, the non-histogram sequence in that
example and the sequence with disjoint predicates in Example 2, in the first, second and third plots respectively. We plot the
average cumulative privacy budget for CacheDP and for the best mechanism in APEx, over 50 runs, versus the query number
in the workload sequence.

predicates (line 9) and obtains new noisy responses ỹp for the non-

cached predicates (line 10). We also insert these new responses

into our cache (line 11). Within the estimateBeta function, we

estimate the privacy budget required for the new responses using

MC as follows. For each run of MC, for predicates in the non-cached

strategy matrix P , we set the noise parameter for the Laplace noise

as the sensitivity of this matrix divided by the ϵ from the binary

search (first case in line 25). However, for predicates that are in the

cached strategy matrix F , the noise parameter is simply the one

that was used to generate the cached response (second case in line

25). We then compute the L∞ norm of the noise vector formed with

these different noise parameters, and test the error bound (line 26).

4 EVALUATION
We integrated our cached-based approach CacheDP into APEx and

compared its privacy cost with that of APEx over the first three

sequences of workloads that are described in Figure 1. We simulate

50 runs of the estMatrixCost function in Algorithm 2. We plot the

average cumulative privacy budget versus the sequence number of

each workload query, over 50 runs, in Figure 3.2. We use the Adult

dataset of the 1994 US census data [3]. We describe each workload

sequence below, and then proceed to discuss our results.

In our first experiment, we consider the case when a data analyst

asks increasingly fine-grained range counting queries for an at-

tribute; that is, the histogram and non-histogram query workloads

presented in Example 1 of Figure 1. In both workloads, although

the cache does not contain the responses for any predicates of later

workloads, it contains responses that are related to them. In our

chooseStrategyMatrix function, we aim to automatically create

a strategy matrix that exploits as many past related responses that

are currently in the cache as possible. Thus, for this example, we

manually chose the binary, hierarchical H2 strategy matrix [12].

The predicates in the strategy matrix for both workloads can be

arranged into a binary tree, under an inclusion relationship. Each

workload in the workload sequence consists of all nodes in the tree

at that level. With APEx as our baseline, we observe that its Laplace

mechanism performs better for the histogram workload sequence

and the matrix mechanism performs better for the non-histogram

sequence. In the plots for both sequences in Figure 3.2, we can see

that the cumulative privacy budget spent for our cached approach

grows linearly with the query sequence number, and with a signifi-

cantly reduced slope than the best mechanism offered by APEx. If

the analyst continues to ask more fine-grained workload queries,

then the cumulative privacy budget savings only increase.

In our second experiment, we focus on our proactive approach,

which would benefit the workload sequences over disjoint pred-

icates shown in Example 2 of Figure 1. That is, we consider the

case where an analyst first asks a single large range counting query

workload, and follows it up with a sequence of smaller workloads,

all of which are at the same granularity and same accuracy re-

quirements. Our baseline, APEx, uses the Laplace Mechanism to

answer each workload query, as this mechanism is the optimal

choice for a single query predicate. Whereas, when we receive Q2,

our getProactive function modifies the workload matrix to fetch

responses for all disjoint predicates that are at the same granularity

as this query. We use the matrix mechanism with the hierarchical

strategy matrix Hk , and thereby exploit the cache for the response

of Q1, by building a k-ary tree of height 1.

Within our approach, only a very small privacy budget needs

to be spent in proactively fetching disjoint predicate responses for

the second workload. In return, we get significant savings in the

future, which will occur for even a single query over one of the dis-

joint predicates. These observations favor incorporating a proactive

caching method. We note that benefits of the proactive approach

are unique to the interactive setting as in the non-interactive one a

more optimal workload could have been derived.

5 FUTUREWORK
Our prototype system can be extended and developed in several

ways. First, we will integrate a cache within McKenna et al.’s [14]

technique of identifying an optimal strategy matrix for a given

workload query. Second, we will develop a detailed proof that

CacheDP preserves B-differential privacy, with particular atten-

tion to the relaxPrivacy algorithm. Third, we will also test our

approach for queries over multiple dimensions, and optimize it for

such queries. We plan to implement an efficient cache structure

and test our algorithm under multiple different query workload se-

quences with different datasets. Althoughwe simply use constraints

over the noisy responses to improve the accuracy of our output, our

work opens up the question of consistency constraints for the inter-

active setting. For instance, an analyst may prefer knowing more

accurate versions of noisy answers to historical queries, as new and

related queries are answered. Our algorithm could potentially be

modified to support this setting.
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