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ABSTRACT
Differential privacy (DP) allows data analysts to query databases

that contain users’ sensitive information while providing a quantifi-

able privacy guarantee to users. Recent interactive DP systems such

as APEx provide accuracy guarantees over the query responses, but

fail to support a large number of queries with a limited total privacy

budget, as they process incoming queries independently from past

queries. We present an interactive, accuracy-aware DP query en-

gine, CacheDP , which utilizes a differentially private cache of past

responses, to answer the current workload at a lower privacy bud-

get, while meeting strict accuracy guarantees.We integrate complex

DP mechanisms with our structured cache, through novel cache-

aware DP cost optimization. Our thorough evaluation illustrates

that CacheDP can accurately answer various workload sequences,

while lowering the privacy loss as compared to related work.
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1 INTRODUCTION
Organizations often collect large datasets that contain users’ sensi-

tive data and permit data analysts to query these datasets for aggre-

gate statistics. However, a curious data analyst may use these query

responses to infer a user’s record. Differential Privacy (DP) [4, 5]

allows organizations to provide a guarantee to their users that the

presence or absence of their record in the dataset will only change

the distribution of the query response by a small factor, given by the

privacy budget. This guarantee is typically achieved by perturbing

the query response with noise that is inversely proportional to the

privacy budget. Thus, DP systems face an accuracy-privacy trade-

off: they should provide accurate query responses, while reducing
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the privacy budget spent. DP has been deployed at the US Census

Bureau [17], Google [29] and Microsoft [3].

Existing DP deployments [1, 3, 14, 17] mainly consider a non-

interactive setting, where the analyst provides all queries in advance.

Whereas in interactive DP systems [7, 12, 20, 29], data analysts sup-

ply queries one at a time. These systems have been difficult to

deploy as they often assume an analyst has DP expertise. First, data

analysts need to choose an appropriate privacy budget per query.

Second, data analysts require each DP noisy query response to

meet a specific accuracy criterion, whereas DP systems only seek

to minimize the expected error over multiple queries. Ge et al.’s

APEx [9] eliminates these two drawbacks, as data analysts need

only specify accuracy bounds in the form of an error rate 𝛼 and a

probability of failure 𝛽 . APEx chooses an appropriate DP mecha-

nism and calibrates the privacy budget spent on each workload, to

fulfill the accuracy requirements. However, interactive DP systems

may run out of privacy budget for a large number of queries.

We observe that we can further save privacy budget on a given

query, by exploiting past, related noisy responses, and thereby,

we can answer a larger number of queries interactively. The DP

post-processing theorem allows arbitrary computations on noisy

responses without affecting the DP guarantee. Hay et al. [11] have

applied this theorem to enforce consistency constraints among

noisy responses to related range queries, thereby improving their

accuracy, through constrained inference. Peng et al. have proposed

caching noisy responses and reusing them to answer future queries

in Pioneer [24]. However, their cache is unstructured and only op-

erates with simple DP mechanisms such as the Laplace mechanism.

We design a usable interactive DP query engine, CacheDP , with

a built-in differentially private cache, to support data analysts in

answering data exploration workloads accurately, without requir-

ing them to have any knowledge of DP. Our system is built on

top of an existing non-private DBMS and interacts with it through

standard SQL queries. CacheDP meets the analysts’ (𝛼, 𝛽) accuracy
requirements on each workload, while minimizing the privacy bud-

get spent per workload. We note that a similar reduction in privacy

budget could be obtained if an expert analyst planned their queries,

however our system removes the need for such planning.

Our contributions address four main challenges in the design of

our engine. First, we structure our cache to maximize the possible

reuse of noisy responses by DP mechanisms (Section 3). Our cache

design fully harnesses the post-processing theorem in the inter-

active setting, for cached noisy responses. Second, we integrate

existing DP mechanisms with our cache, namely Li et al.’s Matrix
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Mechanism [16] (Section 4), and Koufogiannis et al.’s Relax Privacy

mechanism [15] (Section 6). In doing so, we address technical chal-

lenges that arise due to the need to maintain accuracy requirements

over cached responses while minimizing the privacy budget, and

thus, we provide a novel privacy budget cost estimation algorithm.

Third, we extend our cache-aware DP mechanisms with two

modules, which further reduce the privacy budget (Section 5).

Specifically, we apply DP sensitivity analysis to proactively fill

our cache, and we apply constrained inference to increase cache

reuse. We note that CacheDP internally chooses the DP module

with the lowest privacy cost per workload, removing cognitive bur-

den on data analysts. Fourth, we develop the design of our cache

to handle queries with multiple attributes efficiently (Section 7).

Finally, we conduct a thorough evaluation of ourCacheDP against

related work (APEx, Pioneer), in terms of privacy budget consump-

tion and performance overheads (Section 8). We find that it consis-

tently spends lower privacy budget as compared to related work,

for a variety of workload sequences, while incurring modest perfor-

mance overheads. Through an ablation study, we deduce that our

standard configurationwith all DPmodules turned on, is optimal for

the evaluated workload sequences. Thus, researchers implementing

our system need not tinker with our module configurations. This
paper contains several theorems and lemmas; their proofs
can be found in the extended version of the paper [18].

2 BACKGROUND
We consider a single-table relational schema R across 𝑑 attributes:

R(A1, . . .A𝑑 ). The domain of an attributeA𝑖 is given by 𝑑𝑜𝑚(A𝑖 )
and the full domain of R is 𝑑𝑜𝑚(R) = 𝑑𝑜𝑚(A1) × · · · × 𝑑𝑜𝑚(A𝑑 ).
Each attributeA𝑖 has a finite domain size |𝑑𝑜𝑚(A𝑖 ) | = 𝑛𝑖 . The full

domain has a size of 𝑛 =


𝑖 𝑛𝑖 . A database instance 𝐷 of relation

R is a multiset whose elements are values in 𝑑𝑜𝑚(R).
A predicate 𝜙 : 𝑑𝑜𝑚(R) → {0, 1} is an indicator function speci-

fying which database rows we are interested in (corresponds to the

WHERE clause in SQL). A linear or row counting query (RCQ) takes

a predicate 𝜙 and returns the number of tuples in 𝐷 that satisfy

𝜙 , i.e., 𝜙 (𝐷) = 
𝑡 ∈𝐷 𝜙 (𝑡). This corresponds to querying SELECT

COUNT(*) FROM 𝐷 WHERE 𝜙 in SQL. We focus on RCQs for this

work as they are primitives that can be used to express histograms,

multi-attribute range queries, marginals, and data cubes.

In this work, we express RCQs as a matrix. Consider 𝑑𝑜𝑚(R) to
be an ordered list. We represent a database instance 𝐷 by a data

(column) vector x of length 𝑛, where x[𝑖] is the count of 𝑖th value

from 𝑑𝑜𝑚(R) in 𝐷 . After constructing x, we represent any RCQ as

a length-𝑛 vector w with w[𝑖] ∈ {0, 1} for 𝑖 = 1, . . . , 𝑛. To obtain the

ground truth response for a RCQ w, we can simply compute w · x.
Hence, we can represent a workload of ℓ RCQs as an ℓ × 𝑛 matrix

W and answer this workload by matrix multiplication, as Wx.
When we partition the full domain 𝑑𝑜𝑚(R) into a set of 𝑛′ dis-

joint buckets, the data vector x and the workload matrix W over

the full domain 𝑑𝑜𝑚(R) can be mapped to a vector x of size 𝑛′ and
a matrixW of size ℓ ×𝑛′, respectively. We also consider a workload

matrix W as a set of RCQs, and hence applying a set operator over

a workload matrix is equivalent to applying this operator over a

set of RCQs. For example,W′ ⊆ W means the set of RCQs inW′ is
a subset of the RCQs in W. We follow a differential privacy model

with a trusted data curator.

Table 1: Notation

Notation Description
x,w,W,A raw data vector, query vector, query workload ma-

trix, strategy matrix over full domain 𝑑𝑜𝑚(R)
x,w,W,A mapped data vector, query vector, query workload

matrix, strategy matrix over a partition of 𝑑𝑜𝑚(R)
𝛼, 𝛽 accuracy parameters for W

B, 𝐵𝑐 , 𝜖 total budget, consumed budget, workload budget

A∗, CA∗ global strategy matrix, its cache over 𝑑𝑜𝑚(R)
𝑏,𝑦 a scalar noise parameter, a scalar noisy response

b a vector of noise parameters

ỹ, z̃ a vector of noisy responses to the strategy A or W.

(a, 𝑏, 𝑦, 𝑡 ) a cache entry for a strategy query a ∈ A∗ stored at

timestamp 𝑡 . See Definition 3.1.

F, P free strategy matrix, paid strategy matrix

Definition 2.1 (𝜖-Differential Privacy (DP) [4]). A randomized

mechanism𝑀 : D → O satisfies 𝜖-DP if for any output sets𝑂 ⊆ O,
and any neighboring database pairs (𝐷, 𝐷 ′), i.e., |𝐷\𝐷 ′∪𝐷 ′\𝐷 | = 1,

Pr[𝑀 (𝐷) ∈ 𝑂] ≤ 𝑒𝜖 Pr[𝑀 (𝐷 ′) ∈ 𝑂] . (1)

The privacy parameter 𝜖 is also known as privacy budget. A

classic mechanism to achieve DP is the Laplace mechanism. We

present the matrix form of Laplace mechanism here.

Theorem 2.1 (Laplace mechanism [4, 16]). Given an 𝑙 ×𝑛 workload

matrixW and a data vector x, the Laplace Mechanism L𝑏 outputs

L𝑏 (W, x) = Wx+𝐿𝑎𝑝 (𝑏)𝑙 where 𝐿𝑎𝑝 (𝑏)𝑙 is a vector of 𝑙 i.i.d. samples

from a Laplace distribution with scale 𝑏. If 𝑏 ≥ ∥W∥1𝜖 , where ∥W∥1
denotes the 𝐿1 norm of W, then L𝑏 (W, x) satisfies 𝜖-DP.

Li et al. [16] present the matrix mechanism, which first applies

a DP mechanism, 𝑀 , on a new strategy matrix A, and then post-

processes the noisy answers to the queries in A to estimate the

queries inW. This mechanism aims to achieve a smaller error than

directly applying the mechanism𝑀 on W. We will use the Laplace

mechanism L𝑏 to illustrate matrix mechanism.

Definition 2.2 (MatrixMechanism (MM) [16]). Given an 𝑙×𝑛work-
loadmatrixW, a 𝑝×𝑛 strategymatrixA, and the Laplacemechanism

L𝑏 (A, x) that answers A on x, the matrix mechanismMA,L𝑏
out-

puts the following answer:MA,L𝑏
(W, x) = WA+L𝑏 (A, x), where

A+ is the Moore-Penrose pseudoinverse of A.

Intuitively, each workload query inW can be represented as a lin-

ear combination of strategy queries in A, i.e., Wx = WA+ (Ax). We

denote L𝑏 (A, x) by ỹ andMA,L𝑏
by z̃. As the MM post-processes

the output of a DP mechanism [5], it also satisfies 𝜖-DP.

Proposition 2.1 ([16]). If 𝑏 ≥ ∥A∥1𝜖 , thenMA,L𝑏
satisfies 𝜖-DP.

Instead of choosing an appropriate 𝜖 , data analysts may simply

specify accuracy requirements for their queries. We consider two

popular error specifications for DP mechanisms.

Definition 2.3. Given a 𝑙 × 𝑛 workload matrix W and a DP mech-

anism𝑀 , (i) the 𝛼2-expected total squared error bound [16] is

E[∥Wx −𝑀 (W, x)∥2
2
] ≤ 𝛼2 (2)

and (ii) the (𝛼, 𝛽)-worst error bound [9] is defined as

Pr[∥Wx −𝑀 (W, x)∥∞ ≥ 𝛼] ≤ 𝛽. (3)



The error for the matrix mechanism is ∥WA+𝐿𝑎𝑝 (𝑏)𝑙 ∥, which is

independent of the data. This allows a direct estimation of the error

bound without running the algorithm on the data. For example,

Ge et al. [9] provide a loose bound for the noise parameter in the

matrix mechanism to achieve an (𝛼, 𝛽)-worst error bound.

Theorem 2.2 ([9]). The matrix mechanism MA,L𝑏
satisfies the

(𝛼, 𝛽)-worst error bound, if

𝑏 ≤ 𝑏𝐿 =
𝛼
√︁
𝛽/2

∥WA+∥𝐹
(4)

where ∥ · ∥𝐹 is the Frobenius norm.

When we set 𝑏 to this loose bound 𝑏𝐿 , the privacy budget con-

sumed by this mechanism is
∥A∥1
𝑏𝐿

. To minimize the privacy cost, Ge

et al. [9] conduct a continuous binary search over noise parameters

larger than𝑏𝐿 . The filtering condition for this search is the output of

a Monte Carlo (MC) simulation for the error term ∥WA+𝐿𝑎𝑝 (𝑏)𝑙 ∥∞
(i.e., if the sampled error exceeds 𝛼 with a probability ≤ 𝛽).

3 SYSTEM DESIGN
We design an interactive inference engine with a built-in cache,

CacheDP , that supports data analysts in answering data exploration

queries with sufficient accuracy, without requiring them to have

any differential privacy knowledge. The data owner instantiates an

unmodified relational DBMS such as MySQL, with a database that

includes sensitive data. To complete the setup stage, the data owner

also provides a total privacy budget B to our system. At runtime,

the data analyst inputs a workload query W, and an (𝛼, 𝛽) accuracy
requirement that the query should satisfy, to CacheDP . Our system

interacts with the DBMS, via an SQL interface, and a cache C, to
return a differentially private workload response z̃, which satisfies

this accuracy requirement, to the analyst. Each workload response

consumes a privacy budget 𝜖 , out ofB, and the goal of CacheDP is to

reduce 𝜖 by using our cache, which stores historical noisy responses.

We provide an overview of our system design in this section, while

motivating our description through design challenges. Our system

follows a modular design, in order to enable DP experts to develop

new cache-aware, problem-specific modules in the future.

3.1 Cache Structure Overview
Our cache stores previously released noisy DP responses and re-

lated parameters; it does not store any sensitive ground truth data.

Moreover, the cache does not interact directly with the DBMS at all.

Therefore, the cache design evolves independently of the DBMS

or other alternative data storage systems. We consider two design

questions: (i) which queries and their noisy responses should be

stored in the cache; and (ii) what other parameters are needed?

A naive cache design simply stores all historical workloads,

their accuracy requirements and noisy responses [(W1, 𝛼1, 𝛽1, z̃1),
. . . , (W𝑡 , 𝛼𝑡 , 𝛽𝑡 , z̃𝑡 )].When a newworkload (W𝑡+1, 𝛼𝑡+1, 𝛽𝑡+1) comes

in, the system first infers a response z̃′
𝑡+1 from the cache and its

error bound 𝛼 ′
𝑡+1. If its error bound is worse than the accuracy

requirement, i.e., 𝛼 ′
𝑡+1 ≥ 𝛼𝑡+1, then additional privacy budget 𝜖𝑡+1

needs to be spent to improve z̃′
𝑡+1 to z̃𝑡+1. This additional privacy

cost 𝜖𝑡+1 should be smaller than a DP mechanism that does not use

historical query answers.

This cache design is used in Pioneer [24], but it has several

drawbacks. First, this design results in a cache size that linearly

increases with the number of workload queries. Second, we will not

be able to compose and reuse cached past responses to overlapping

workloads (W𝑡−𝑘∩W𝑡 ≠ ∅). Simply put, this design works with only

simple DP mechanisms, which answer the data analyst-supplied

workloads directly with noisy responses. For instance, Pioneer [24]

considers only single query workloads and the Laplace mechanism.

We seek to design a reusable cache that can work with complex

DP mechanisms, and in particular, the matrix mechanism. Thus,

we need to structure our cache such that cached queries and their

noisy responses can be reused efficiently, in terms of the additional

privacy cost and run time, while limiting the cache size.

Our key insight is that the strategy matrices in Matrix Mecha-

nism in Def 2.2 can be chosen from a structured set. So, we store

noisy responses to the matrix that the mechanism answers directly

(the strategy matrix), instead of storing noisy responses that are

post-processed and returned to the data analyst (the workload ma-

trix). If all the strategy matrices share a similar structure, in other

words, many similar queries, then we need to only track a limited

set of queries in our cache. Relatedly, since the (𝛼, 𝛽) accuracy re-

quirements for different workload matrices can only be composed

through a loose union bound, we instead track the noise parameters

that are used to answer the associated strategy matrices. Thus, in

our cache, we store the strategy queries, the noisy strategy query

responses and the noise parameters.

This cache design motivates us to consider a global strategy

matrix A∗ for the cache that can support all possible workloads.

Importantly, for a given workload matrix W, we present a strategy

transformer (ST) module to generate an instant strategy matrix,

denoted by A, such that each instant strategy matrix is contained

in the global strategy matrix, i.e., A ⊆ A∗. In this design, the cache

tracks each strategy entry a ∈ A∗, with its noisy response, its noise

parameter, and the timestamp.

Definition 3.1 (Cache Structure). Given a global strategy matrix

A∗ over the full domain 𝑑𝑜𝑚(R), a cache for differentially private

counting queries is defined as

CA∗ = {. . . , (a, 𝑏,𝑦, 𝑡), . . . |a ∈ A∗}, (5)

where 𝑏 and 𝑦 are the latest noise parameter and noisy response for

the strategy query a, and 𝑡 is the time stamp for the latest update

of a. At beginning, all entries are initialized as (a,−,−, 0), where
‘−’ denotes invalid values. We use C to represent the set of entries

with valid noisy responses and 𝑡 > 0.

In this work, we consider a hierarchical structure, or 𝑘-ary tree,

for A∗, which is a popular and effective strategy matrix for MM [16]

with an expected worst error of 𝑂 (log3 𝑛), where 𝑛 is the domain

size. Figure 1 shows the global strategy matrix as a binary tree

decomposition of a small integer domain [0, 8).

3.2 Strategy Transformer (ST) Overview
We outline the Strategy Transformer (ST) module, which is com-

monly used by all of our cache-aware DP modules. The ST module

consists of two components: a Strategy Generator (SG) and a Full-

rank Transformer (FRT). Prior work [16] uses the global strategy A∗,
which has a high ∥A∗∥1. Given an input W, the SG selects a basic
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Figure 1: A global strategy A∗ in a binary tree decomposition
for an integer domain [0, 8). Workloads include W1 = {[0, 7)},
W2 = {[2, 6), [3, 7)}. Strategy nodes unique to A1 are in blue
text, those unique to A2 are in magenta text, whereas those
in both A1 and A2 are in purple text. The dashed nodes are
output by the PQ module (Section 5.3), for A2.

instant strategy A ⊆ A∗, with a low ∥A∗∥1, among other criteria.

The cache is not searched while generating A. We generate instant

strategies for example workloads below.

Example 3.1. In Figure 1, for an integer domain [0, 8), we show a

binary tree decomposition for its global strategy A∗. This strategy
consists of (23 + 22 + 21 + 1) row counting queries (RCQs), where

each RCQ corresponds to the counting query with the predicate

range indicated by a node in the tree. We use A∗[𝑎,𝑏) to denote the

RCQ with a range [𝑎, 𝑏) in the global strategy matrix.

The first workload W1 consists of a single query with a range

predicate [0, 7). Its answer can be composed by summing over noisy

responses to three RCQs in the global strategymatrix, (A∗[0,4) , A
∗
[4,6) ,

A∗[6,7) ). The second workload W2 has two queries with range pred-

icates ([2, 6), [3, 7)). It can be answered using A2 = (A∗[2,4) , A
∗
[4,6) ,

A∗[3,4) , A
∗
[6,7) ). We detail the strategy generation in Example 5.1.

We observe that the RCQs A∗[4,6) and A∗[6,7) are common to both

A1 and A2, thus our cache-aware DP mechanisms can potentially

reuse their noisy responses to answer A2. □

The accuracy analysis of the matrix mechanism only holds over

full rank strategy matrices, however, the instant strategy A may be

a very sparse matrix over the full domain, and thus, may not be full

rank. We address this challenge in the FRT module, by mapping

the instant strategy A, workload W, data vector x, to a compact, full-

rank, efficient representation, resulting in A, W and x respectively.

Thus for an input W, x, the ST module outputs (A,W, x). Since the
cache entries should be uniquely addressable, the raw data vector

x and strategy A are used to index the cache.

3.3 Cache-aware DP Modules
Our system supports two novel classes of cache-aware DP mecha-

nisms: Modified Matrix Mechanism (MMM) and the Relax Privacy

Mechanism (RP). Each cache-aware DP mechanism implements

two interfaces (similar to APEx [9]) using the ST module outputs,

namely (A,W, x), as well as the cache CA∗ :
• The answerWorkload interface answers a workloadW using

the cache CA∗ and an instant strategy A to derive fresh noisy

strategy responses, using the ground truth from the DB. Each

implementation of this interface also updates the cache CA∗ .

Algorithm 1 CacheDP Overview

Require: Dataset 𝐷 , Total privacy budget B.
1: Initialize privacy loss 𝐵𝑐 = 0, cache CA∗ = {(w,−,−, 0) |w ∈ A∗}
2: repeat
3: Receive (𝑄, 𝛼, 𝛽) from analyst

4: W← getMatrixForm(𝑄, x)
5: A,A,W← generateStrategy(W,A∗)
6: (𝑏, 𝜖1) ←MMM.estimatePrivacyBudget(C,A,W, 𝛼, 𝛽)

7: 𝜖2 ← RP.estimatePrivacyBudget(C,A,W, 𝛼, 𝛽)

8: A𝑒 ,A𝑒 ,← SE.generateExpandedStrategy(A, C, 𝑏)
9: 𝜖3 ←MMM.estimatePrivacyBudget(C,A𝑒 ,W, 𝛼, 𝛽)

10: Pick (�̂�, Â) from (MMM/RP, A/A𝑒 ) that has smallest 𝜖𝑖
11: if 𝜖𝑖 + 𝐵𝑐 ≥ B then
12: Answering 𝑄 satisfying (𝛼, 𝛽) will exceed B. Reject 𝑄 .
13: 𝑧 ← �̂� .answerWorkload(C, Â,W, 𝜖𝑖 , x)
14: return 𝑧 to data analyst.

15: 𝐵𝑐 ← 𝐵𝑐 + 𝜖𝑖
16: until no more 𝑄 from the analysts

• The estimatePrivacyBudget interface estimates theminimum

privacy budget 𝜖 required by the answerWorkload interface

to achieve the (𝛼, 𝛽) accuracy requirement.

For the first cache-aware DP mechanism, MMM, we have two

additional optional modules, namely Strategy Expander (SE) and

Proactive Querying (PQ), which modify the instant strategy A out-

put by the basic ST module, for different purposes. The SE module

expands the basic A with related, cached, accurate strategy rows in

CA∗ to exploit constrained inference as discussed by Hay et al. [11].

The goal of this module is to further reduce the privacy cost of the

basic instant strategy to answer the given workload W. On the

other hand, the PQ module is designed to fill the cache proactively,

for later use by the MMM, MMM+SE, and RP mechanisms. It ex-

pands A with strategy queries that are absent from CA∗ , without
incurring any additional privacy budget over the MMM module.

Therefore, it reduces the privacy cost of future workload queries.

Putting it all together, we state the end-to-end algorithm in Al-

gorithm 1. First, for an input workload (W, 𝛼, 𝛽), our system first

uses the ST module to generate a full-rank instant strategy matrixA
(line 5), and then executes the estimatePrivacyBudget interface,

with the input tuple (W,A, 𝛼, 𝛽), for the MMM, MMM+SE, and

RP mechanisms (line 6-9). We choose the mechanism that returns

the lowest privacy cost 𝜖𝑖 (line 10). If the sum of this privacy cost

with the consumed privacy budget is smaller than the total privacy

budget, then the system executes the answerWorkload interface

for the chosen mechanism, with the input tuple (W, Â, 𝜖𝑖 ) (line 13).
The consumed privacy budget will increase by 𝜖𝑖 (line 15). (The

PQ module does not impact the cost estimation for MMM, it only

extends the strategy matrix A to be answered.) We present the

MMM in Section 4, the common ST module and the MMM optional

modules (SE, PQ) in Section 5, and the RP mechanism in Section 6.

Theorem 3.1. CacheDP, as defined in Algorithm 1, satisfies B-DP.

4 MODIFIED MATRIX MECHANISM (MMM)
We describe our core cache-aware DP mechanism, namely the Mod-

ified Matrix Mechanism. We wish to answer a workloadW with an



(𝛼, 𝛽)-accuracy requirement using a cache CA∗ and an instant strat-

egy A ⊆ A∗, while minimizing the privacy budget 𝜖 . First, we intuit

the mechanism design. Second, we describe the answerWorkload

interface, which answers W through A, under optimal parameters.

Third, we describe the EstimatePrivacyBudget interface, which

derives an optimal 𝜖 and other parameters for the former interface.

4.1 MMM Overview
The cachelessmatrixmechanism (Definition 2.2) perturbs the ground

truth response to the strategy, that is Ax, with the noise vector

freshly drawn from 𝐿𝑎𝑝 (𝑏) |A | to obtain ỹ = Ax + 𝐿𝑎𝑝 (𝑏) |A | . An
input workload is then answered using WA+ỹ. As we discussed in

the background, in an accuracy-aware DP system such as APEx [9],

the noise parameter 𝑏 is calibrated, first through a loose bound 𝑏𝐿
and then to a tighter noise parameter 𝑏𝑇 , such that the workload

response above meets the (𝛼, 𝛽)-accuracy requirement. This spends

a privacy budget
∥A∥1
𝑏𝑇

(Proposition 2.1).

In MMM, we seek to reduce the privacy budget spent by using

the cache C. Given an instant strategy matrix A ⊆ A∗, we first

lookup the cache for any rows in the strategy matrix A. Note that
not all rows in A have their noisy responses in the cache. The

cache may contain noisy responses for some rows of A, given by

C ∩ A, whereas other rows in A may not have cached responses. A

preliminary approach would be to simply reuse all cached strategy

responses, and obtain noisy responses for non-cached strategy rows

by expending some privacy budget through naive MM. However,

some cached responses may be too noisy and thus including them

will lead to a higher privacy cost than the cacheless MM.

Our key insight is that by reusing noisy responses for accurately

cached strategy rows, MMM can ultimately use a smaller privacy

budget for all other strategy rows as compared to MM without

cache while satisfying the accuracy requirements. Thus, out of all

cached strategy rows C ∩A, MMM identifies a subset of accurately

cached strategy rows F ⊆ C∩A that can be directly answered using

their cached noisy responses, without spending any privacy budget.

MMM only spends privacy budget on the remaining strategy rows,

namely on P = A−F. We refer to F and P as the free strategy matrix

and the paid strategy matrix respectively. MMM consists of two

interfaces as indicated by Algorithm 2: (i) answerWorkload and

(ii) estimatePrivacyBudget. The second interface seeks the best

pair of free and paid strategy matrices (F, P) that use the smallest

privacy budget 𝜖 to achieve (𝛼, 𝛽)-accuracy requirement. The first

interface will make use of this parameter configuration (F, P, 𝜖) to
generate noisy responses to the workload.

4.2 Answer Workload Interface
We present the first interface answerWorkload for the MMM. We

recall that this interface is always called after the estimatePriva-

cyBudget interface which computes the best combination of free

and paid strategy matrices and their corresponding privacy budget

(F, P, 𝑏P, 𝜖). As shown in Algorithm 2, the answerWorkload in-

terface first calls the proactive module (Section 5.3). If this module

is turned on, Pwill be expanded for the remaining operations. Then

this interface will answer the paid strategy matrix P using Laplace

mechanism with the noise parameter 𝑏P. We have 𝑏P =
∥P∥1
𝜖 , to

ensure 𝜖-DP (Line 4). Then, it updates the corresponding entries

Algorithm 2 MMM main interfaces and supporting functions

1: function answerWorkload( C,A,W, 𝜖, x)
2: (F, P, 𝑏P, 𝜖) from pre-run EstimatePrivacyBudget(C,A,W, 𝛼, 𝛽)

3: (Optional) Expand P with PQ module (Section 5.3)

4: ỹP ← Px + 𝐿𝑎𝑝 (𝑏P) |P| ⊲ we have 𝑏P =
∥P∥1
𝜖

5: Update cache CA∗ with (P, 𝑏P, ỹP, 𝑡 = current time)
6: ỹF ← [(w, 𝑏, �̃�, 𝑡 ) ∈ C |w ∈ F] ⊲ free cached responses for F
7: ỹ← ỹF ∥ỹP ⊲ concatenate noisy responses for A.
8: returnWA+ỹ, 𝜖

9: function EstimatePrivacyBudget(C,A,W, 𝛼, 𝛽)

10: Set upper bound 𝑏⊤ =
∥A∥1
𝜖⊥ ⊲ 𝜖⊥ is the budget precision

11: Set loose bound 𝑏𝐿 =
𝛼
√
𝛽/2

∥WA+ ∥𝐹
⊲ Theorem 2.2 (without cache)

12: b← [(w, 𝑏, �̃�, 𝑡 ) ∈ C | w ∈ A ∩ C, 𝑏 > 𝑏𝐿 ] ∪ [𝑏𝐿 ]
13: 𝑏𝐷 ← binarySearch(sort(b), checkAccuracy(·, C,A,W, 𝛼, 𝛽)) ⊲

Search 𝑏𝐷 in the discrete space

14: F← [𝑐.a ∈ C | 𝑐.a ∈ A ∩ C, 𝑐 .𝑏 < 𝑏P ] and P← A − F
15: 𝑏P ← binarySearch([𝑏𝐷 , 𝑏⊤ ], checkAccuracy(·, C,A,W, 𝛼, 𝛽))

⊲ Search 𝑏P in a continuous space

16: return ( F, P, 𝑏P,
∥𝑃 ∥1
𝑏P

)

in the cache CA∗ (Line 5). In particular, for each query w ∈ P,
we update its corresponding noisy parameter, noisy response, and

timestamp in CA∗ to 𝑏P, 𝑦, and the current time. After obtaining the

fresh noisy responses ỹP for the paid strategy matrix, this interface

pulls the cached responses ỹF for the free strategy matrix from the

cache and concatenate them into ỹ according to their order in the

instant strategy A (Lines 6-7). Finally, this interface returns a noisy

response to the workloadWA+ỹ, and its privacy cost 𝜖 .

Proposition 4.1. The AnswerWorkload interface of MMM (Al-

gorithm 2) satisfies 𝜖-DP, where 𝜖 is the output of this interface.

As the final noisy response vector ỹ to the strategy A is concate-

nated from ỹF and 𝑦P, its distribution is equivalent to a response

vector perturbed by a vector of Laplace noise with parameters:

b = bF | |bP, where bF is a vector of noise parameters for the cached

entries in F with length |F| and bP is a vector of the same value 𝑏P
with length |P|. This differs from the standard matrix mechanism

with a single scalar noise parameter. We derive its error term next.

Proposition 4.2. Given an instant strategy A = (F| |P) with a

vector of 𝑘 noise parameters b = bF | |bP, the error to a workload W
using the AnswerWorkload interface of MMM (Algorithm 2) is

∥WA+𝐿𝑎𝑝 (b)∥ (6)

where𝐿𝑎𝑝 (b) draws independent noise from𝐿𝑎𝑝 (b[1]), . . . , 𝐿𝑎𝑝 (b[𝑘])
respectively. We can simplify its expected total square error as

∥WA+𝑑𝑖𝑎𝑔(b)∥2𝐹 (7)

where 𝑑𝑖𝑎𝑔(b) is a diagonal matrix with 𝑑𝑖𝑎𝑔(b) [𝑖, 𝑖] = b[𝑖].

4.3 Estimate Privacy Budget Interface
The second interface EstimatePrivacyBudget chooses the free

and paid strategy matrices and the privacy budget to run the first

interface forMMM. This corresponds to the following questions:

(1) Which cached strategy rows out of C ∩A should be included in

the free strategy matrix F? The choice of F directly determines

the paid strategy matrix P as A − F.
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Figure 2: Consider W1 = {[0, 7)} with its corresponding
mapped workload matrix, instant strategy, noise vector, and
data vector. Reusing a cached response for the first row with
noise parameter 𝑏𝑐 requires a smaller noise parameter 𝑏 (and
hence a bigger privacy budget) for the other rows than the
cacheless MM to achieve the same accuracy level.

(2) Given P and 𝑏P, the privacy budget paid by MMM is given by

𝜖 = ∥P∥1/𝑏P = ∥A − F∥1/𝑏P. To minimize this privacy budget,

what is the maximum noise parameter value 𝑏P that can be used

to answer P while meeting the accuracy requirement?

A baseline approach to the first question is to simply set F = C∩A,
that is, we reuse all cached strategy responses. This approach may

reuse inaccurate cached responses with large noise parameters,

which results in a larger 𝜖 (or a smaller 𝑏P) to achieve the given

accuracy requirement than answering the entire A by resampling

new noisy responses without using the cache.

Example 4.1. Continuing with Example 3.1, we have an instant

strategy A for the workload W1 with range predicate [0, 7) mapped

to a partitioned domain {[0, 4), [4, 6), [6, 7)}. The mapped workload

and instant strategy are shown in Figure 2. For simplicity, we use

the expected square error to illustrate the drawback of the baseline

approach, but the same reasoning applies to (𝛼, 𝛽)-worst error
bound. Without using the cache, when we set b = [10, 10, 10], we
achieve an expected error ∥WA+𝑑𝑖𝑎𝑔(b)∥2

𝐹
= 300 for the workload

W. Suppose the cache has an entry for the first RCQ [0, 4) of the
strategy and a noise parameter 𝑏𝑐 = 15. Using this cached entry, the

noise vector becomes b = [15, 𝑏P, 𝑏P], and the expected square error
is ∥WA+𝑑𝑖𝑎𝑔(b)∥2

𝐹
= 15

2 + 2𝑏2P. To achieve the same or a smaller

error than the cacheless MM, we need to set𝑏P ≤
√︁
(300 − 152)/2 ≈

6.12 for the remaining entries in the strategy. This tighter noise

parameter 𝑏P corresponds to a larger privacy budget. □

4.3.1 Privacy Cost Optimizer. We formalize the two aforemen-

tioned questions as an optimization problem, subject to the accuracy

requirements, as follows.

Cost estimation (CE) problem:Given a cacheC and an instant
strategy matrix A, determine F ⊆ (A ∩ C) (and P = A − F) and
𝑏P ∈ [𝑏𝐿, 𝑏⊤] that minimizes the paid privacy budget 𝜖 =

∥P∥1
𝑏P

subject to accuracy requirement:

∥WA+𝑑𝑖𝑎𝑔(bF | |bP)∥2𝐹 ≤ 𝛼2 or

Pr[∥WA+𝐿𝑎𝑝 (bF | |bP)∥∞ ≥ 𝛼] ≤ 𝛽 .

In this optimization problem, the lower bound for 𝑏P is the loose

bound for the cacheless MM (Equation (4)), and the upper bound

𝑏⊤ is
∥𝐴 ∥1
𝜖⊥

, where 𝜖⊥ is the smallest possible privacy budget.

In a brute-force solution to this problem, we can search over all

possible pairs of F ⊆ (A∩C) and 𝑏P ∈ [𝑏𝐿, 𝑏⊤], and check whether
every possible pair of (F, 𝑏P) can lead to an accurate response. In

this solution, the search space for F will be 𝑂 (2 |A∩C |) and thus

the total search space will be 𝑂


2
|A∩C | · log

2
( | [𝑏𝐿, 𝑏⊤] |)


if we

apply binary search within [𝑏𝐿, 𝑏⊤]. Hence, we need another way

to efficiently determine optimal values for (F, 𝑏P).

4.3.2 Simplified Privacy Cost Optimizer. We present a simplifica-

tion to arrive at a much smaller search space for (F, 𝑏P), while
ensuring that 𝑏P improves over the noise parameter of the cache-

less MM. We observe that, if we perturb the paid strategy matrix

with noise parameter 𝑏P and choose cached entries with noise

parameters smaller than 𝑏P, we will have a smaller error than a

cacheless MM with a noise parameter 𝑏 = 𝑏P for all the queries in

the strategy matrix. This motivates us to consider the following

search space for F. When given 𝑏P, we choose a free strategy matrix

fully determined by this noise parameter:

F𝑏P = {𝑐.a ∈ C | 𝑐.a ∈ C ∩ A, 𝑐 .𝑏 ≤ 𝑏P}, (8)

and formalize a simplified optimization problem.

Simplified CE problem: Given a cache C and an instant strat-

egy matrix A, determine 𝑏P ∈ [𝑏𝐿, 𝑏⊥] (and F = F𝑏P , P = A − F)
that minimizes the paid privacy budget 𝜖 =

∥P∥1
𝑏P

subject to:

∥WA+𝑑𝑖𝑎𝑔(bF | |bP)∥2𝐹 ≤ 𝛼2 or

Pr[∥WA+𝐿𝑎𝑝 (bF | |bP)∥∞ ≥ 𝛼] ≤ 𝛽 .

Theorem 4.1. The optimal solution to simplified CE problem incurs

a smaller privacy cost 𝜖 than the privacy cost 𝜖F=∅ of the matrix

mechanism without cache, i.e., MMM with F = ∅.

4.3.3 Algorithm for Simplified CE Problem. We present our search

algorithm to find the best solution to the simplified CE problem,

shown in the estimatePrivacyBudget function of Algorithm 2. In

our extended paper, we visualize our searches through the cached

noise parameters. First, we setup the upper and lower bounds for

the noise parameter 𝑏P for the simplified CE problem (Lines 10-11).

Step 1: Discrete search for 𝑏P. We first search 𝑏P from the

existing noise parameters in the cached strategy rows A ∩ C that

are greater than 𝑏𝐿 (Line 12). We also include 𝑏𝐿 in this noise pa-

rameter list b. Next, we sort the noise parameter list b and conduct

a binary search in this sorted list to find the largest possible 𝑏𝐷 ∈ b
that meets the accuracy requirement (Line 13). During this binary

search, to check if a given 𝑏P achieves (𝛼, 𝛽)-accuracy requirement,

we run the function checkAccuracy. This function first places

all the cached entries with noise parameter smaller than 𝑏P into F
and the remaining entries of the strategy into P . Then it runs an

MC simulation of the error WA+𝐿𝑎𝑝 (bF | |bP) (Proposition 4.2). If a

small number of the simulated error vectors have a norm bigger

than 𝛼 , then this paid noise vector 𝑏P achieves (𝛼, 𝛽)-accuracy guar-
antee. This MC simulation differs from a traditional one [9] which

makes no use of the cache and has only a single scalar noise value

for all entries of the strategy. On the other hand, if the accuracy

requirement is 𝛼2-expected total square error, we simply check if

∥WA+𝑑𝑖𝑎𝑔(bF | |bP)∥2
2
≤ 𝛼2.

Step 2: Refining 𝑏P in a continuous space.We observe that

we may further increase 𝑏P, by examining the interval between 𝑏𝐷 ,

which is the output from the discrete search, and the next largest

cached noise parameter, denoted by⊤𝐶 = 𝑏𝐷+1. If⊤𝐶 does not exist,

then we set ⊤𝐶 = 𝑏⊤. We conduct a binary search in a continuous

domain [𝑏𝐷 ,⊤𝐶 ] (Line 15). This continuous search does not impact

the free strategy matrix F obtained from the discrete search, as



the chosen noise parameter will be strictly smaller than 𝑏𝐷+1. This
search outputs a noise parameter 𝑏P. Finally, this function returns

𝑏P, the privacy budget 𝜖 =
∥P∥1
𝑏P

, as well as the free and paid strategy

matrices outputted from the discrete search.

The search space for this simplified CE problem is 𝑂 (log
2
( | [𝑏𝐿,

𝑏⊤] |)). We only need to sort the cached matrix once, which costs

𝑂 (𝑛𝑐 · log(𝑛𝑐 )), where 𝑛𝑐 = |A ∩ C|. Hence, this approach signifi-

cantly improves the brute-force search solution for the CE problem.

5 STRATEGY MODULES
In this section, we first present the strategy transformer (ST), which

is used by all of our cache-aware DP mechanisms. We then present

two optional modules for MMM: the Strategy Expander (SE) and

Proactive Querying (PQ). Due to space constraints, all detailed

algorithms for this section are included in the full paper [18].

5.1 Strategy Transformer
The ST module selects an instant strategy from the given global

strategy A ⊆ A∗ based on the workload W. Since our cache-aware

MMM and RP modules build on the matrix mechanism, we require

a few basic properties for this instant strategy A to run the former

mechanisms, with good utility. First, the strategy A should be a

support to the workload W [16], that is, it must be possible to

represent each query in W as a linear combination of strategy

queries in A. In other words, there exists a solution matrix X to the

linear system W = XA. Second, A should have a low 𝑙1 norm, such

that the privacy cost 𝜖 =
∥A∥1
𝑏

for runningMM is small, for a given a

noise parameter 𝑏 (Proposition 2.1). Third, using noisy responses to

A to answer W should incur minimal noise compounding [11]. We

thus present the strategy generator (SG) component, to address all

of these requirements. The strategy generator only uses the global

strategy A∗, and does not use the cached responses, to generate an

instant strategy A for the workload W.

Last, we require that A must be mapped to a full rank matrix

A, such that A+ỹ is the estimate of the mapped data vector x that

minimizes the total squared error given the noisy observations ỹ
of the strategy queries A [16, Section 4]. We present a full-rank

transform (FRT) component to address this last requirement. The

ST module runs the SG and FRT components sequentially.

5.1.1 Strategy Generator. Consider using the global strategy A∗ as
follows: to answer the first workload, we obtain the noisy strategy

responses for all nodes on the tree, thereby fully populating the

cache. Cached noisy responses can be reused for future workloads.

Though A∗ supports all possible counting queries over 𝑑𝑜𝑚(R), it
has a very high norm ∥A∗∥, equal to the tree height log𝑘 (𝑛) + 1,
where 𝑛 is the full domain size. Thus, answering the first workload

would require spending a high upfront privacy budget, which may

not be amortized across future workloads, as they may focus on a

small part of the domain with higher accuracy requirements.

To obtain a low norm strategy matrix, we only choose those

strategy queries from A∗ that support the workload W. Intuitively,

we wish to fill the cache with noisy responses to as many strategy

queries as possible, thus we should bias our strategy generation

algorithm towards the leaf nodes of the strategy tree. However, the

DP noisy responses for the strategy nodes would be added up to

answer the workload, and summing up responses to a large number

of strategy leaf nodes compounds the DP noise in the workload

response [11]. Thus, for each query in the workload W, we apply

a top-down tree traversal to fetch the minimum number of nodes

in the strategy tree (and the corresponding queries in A∗) required
to answer this workload query. Then we include all these queries

into the instant strategy A for this workload W. The 𝐿1 norm of

the output strategy matrix is then simply the maximum number of

nodes in any path of the strategy tree, and it is upper-bounded by

the tree height. We present an example strategy generation below.

Example 5.1. We continue with Example 3.1 shown in Figure 1,

for an integer domain [0, 8). For the single workload query W1 =

w = [0, 7), the first iteration of our SG workload decomposition

algorithm computes the overlap of w with its left child 𝑐1 = A∗[0,4)
as w𝑐1 = [0, 4) and the overlap with its right child 𝑐2 = A∗[4,8) as
w𝑐2 = [4, 7). The function only iterates once for the left child 𝑐1,

directly outputs that child’s range A∗[0,4) , as the base condition is

satisfied. In the next iteration for the right child 𝑐2, the overlaps

with both of its children are non-null ([4, 6) with A∗[4,6) and [6, 7)
with A∗[6,8) ), and the corresponding strategy nodes are returned

in subsequent iterations. Since A1 has no overlapping intervals,

∥A1∥1 = 1 < ∥A∗∥1. We observe that though A∗ is full-rank, due to
the removal of strategy queries that do not support the workloads,

both A1 and A2 are not full rank. □

5.1.2 Full Rank Transformer (FRT). We transform an instant strat-

egy matrix A to a full rank matrix A by mapping the full domain

𝑑𝑜𝑚(R) of size 𝑛 to a new partition of the full domain of 𝑛′ ≤ 𝑛

non-overlapping counting queries or buckets. The resulting parti-

tion should still support all the queries in the instant raw strategy

A output by our SG. For efficiency, the partition should have the

smallest possible number of buckets such that the transformed strat-

egy A will be full rank. First, we define a domain transformation

matrix T of size 𝑛′×𝑛 that transforms the data vector x over the full
domain to the partitioned data vector x, such that x = Tx. Using T,
we can then transform a raw A to a full-rank A.

Definition 5.1 (Transformation Matrix). Given a partition of 𝑛′

non-overlapping buckets over the full domain 𝑑𝑜𝑚(R), if the 𝑖th
value in 𝑑𝑜𝑚(R) is in the 𝑗th bucket, T[ 𝑗, 𝑖] = 1; else, T[ 𝑗, 𝑖] = 0.

Theorem 5.1. Given a global strategy A∗ in a 𝑘-ary tree structure,

and an instant strategy A ⊆ A∗, transformStrategy outputs a

strategy A that is full rank and supports A.

We present an example FRT in our full paper. The ST module

finally outputs A, A, as well as the transformation matrix, as it can

be used to transform W. We use the full-rank versions W, A for all

invocations of the matrix mechanism (i.e. computingWA+).

5.2 Strategy Expander
We recall that our goal with CacheDP is to use cached strategy

responses, in order to save privacy budget on new strategy queries.

Section 4 shows that MMM achieves this goal by directly reusing

accurate strategy responses from the cache for the basic instant

matrix, i.e., by selecting F ⊆ C ∩ A. In this strategy expander (SE)

module, we provide efficient heuristics to include additional cached

strategy entries out of C − A, to A to save more privacy budget.



Consider a strawman solution to choosing cache entries: we sim-

ply add all strategy queries from C − A to A, in order to obtain an

expanded strategy A𝑒 . The error term for the expanded strategy is

given by: WA+𝑒 diag(b𝑒 ) (Proposition 4.2). In our full version of the

paper [18], we discuss related work hypothesizing this strawman

solution [16], and we present an example wherein the strawman

solution can lead to a strategy with an increased error term. In-

tuitively, adding a strategy query results in changed coefficients

inWA+𝑒 , that is, this added query changes the weight with which

noisy responses to the original strategy queries are used to form

the workload response. The added strategy query response must

also be accurate, since adding a large, cached noise parameter to

b𝑒 will also likely increase the magnitude of the error term (recall

the example in Figure 2).

A brute force approach to find the optimal A𝑒 would consider all

possible subsets of cache entries from C − A and check if the error

is better than the original strategy. This induces an exponentially

large search space of𝑂 (2 |C |) possible solutions for A𝑒 . We propose

a series of efficient heuristics to obtain a greedy solution.

First, we search only the strategy queries from C − A that are

accurate enough. Recall that theMMM.estimatePrivacyBudget

interface outputs the noise parameter 𝑏P. Just as we used 𝑏P to

compute F, we can also use it to select cache entries for A𝑒 that

are at least as accurate as other entries in F. These accurate cached
responses will likely improve the accuracy of theworkload response.

We first sort the cache entries in increasing order of the noise

parameters and add each entry to A𝑒 one by one until its noise

parameter is greater than 𝑏P, or, we reach a maximum bound on

the cached strategy size. This approach reduces the search space

from 𝑂 (2 |C |) to 𝑂 ( |C|) and ensures that the additional strategy

rows do not significantly increase the run-time of CacheDP .

Second, we ensure that each query a added to A𝑒 is a parent

or a child of an existing query a′ ∈ A. Our heirarchical global
strategy A∗ structures cache entries, and induces relations between
the cached noisy responses. The constrained inference problem

focuses on minimizing the error term for multiple noisy responses,

while following consistency constraints among them, as described

by Hay et al. [11]. For example, if we add the strategy queries

corresponding to the siblings and parent nodes of an existing query

in A, we obtain an additional consistency constraint which tends to

reduce error. However, if we only added the sibling node, we would

not have seen as significant (if any) improvement. This heuristic

selects strategy rows that are more likely to reduce the privacy

budget compared to MMM (𝜖P).
The privacy budget forA𝑒 is estimated using theMMM.estimate-

PrivacyBudget interface. We encapsulate SE as a module rather

than integrate it with MMM, since our heuristics might fail and

A𝑒 might cost a higher privacy budget than the A used by MMM.

Since Algorithm 1 chooses the answerWorkload interface for the

module and strategy with the lowest privacy cost, in the above case,

A𝑒 is simply not used. We analyze the conditions under which our

heuristics result in SE module being selected, in our full paper [18].

5.3 Proactive Querying
The proactive querying (PQ) module is an optional module for

MMM. The MMM obtains fresh noisy responses only for the paid

strategy matrix P, and inserts them into the cache. The goal of

the PQ module is to proactively populate the cache with noisy

responses to a subset ΔP out of the remaining, non-cached strategy

queries of the global strategy (A∗ − C − P), where P corresponds

to the raw, non-full rank form of P. Thus, we run the PQ module

in the function MMM.answerWorkload(·) after obtaining the

paid strategy matrix P. Our cache-aware modules, including MMM,

RP and SE, can use the cached noisy responses to ΔP to answer

future instant strategy queries. We wish to satisfy this goal without

consuming any additional privacy budget over the MMM.

We first motivate key constraints for the PQ algorithm. First,

we do not assume any knowledge of future workload query se-

quences. However, all future workload queries will be transformed

into instant strategy matrices, and our cache-aware mechanisms

will lookup the cache for cached strategy rows. Second, we also do

not know the accuracy requirements for future workload queries.

Future workloads may be asked at different accuracy requirements

than the current workload. Thus, we choose to obtain responses to

ΔP at the highest possible accuracy requirements without spending

any additional privacy budget over that required for P by MMM,

which is 𝜖 =
∥P∥1
𝑏P

. Our key insight is to generate ΔP ⊆ (A∗−C−P)
such that ∥P ∪ ΔP∥1 = ∥P∥1. Therefore, answering both instant

strategies (P and ΔP) with the Laplace mechanism using 𝑏P costs

no more privacy budget than simply answering P at 𝑏P.

Theorem 5.2. Given a paid strategy matrix P our proactive strategy

generation algorithm outputs ΔP such that ∥P ∪ ΔP∥1 = ∥P∥1.

Our proactive generation algorithm consists of two top-down

traversals of the tree.We illustrate our proactive strategy generation

algorithm through the following example. Our detailed algorithm

and theorem proofs are in the full paper [18].

Example 5.2. In Figure 1, we apply our proactive strategy genera-

tion function to to P2 = {A∗[2,4) ,A
∗
[3,4) } for W2 in our example se-

quence. Our algorithm outputs ΔP2 = {A∗[4,8) , A
∗
[0,2) , A

∗
[0,1) , A

∗
[1,2) ,

A∗[2,3) }. (A
∗
[7,8) is excluded from ΔP2 since it is cached from A1 for

W1.) Here, ∥P2∥1 = ∥P2 ∪ ΔP2∥1 = 2. Adding any other nodes

from the tree to ΔP2 will increase the number of nodes in A ∪ ΔP
that are on the same path of the tree from 2 to 3 or 4, or in other

words, ∥P2 ∪ ΔP2∥1 might increase. Instead of any node in ΔP2

we could obtain its children nodes, however, our algorithm prefers

nodes at the higher layers of the tree, since they are more likely to

be reused by other modules. Note that ΔP2 does not only consist

of disjoint query predicates. For example, A∗[0,2) and A∗[0,1) overlap.

6 RELAX PRIVACY MECHANISM
When exploring a database, a data analyst may first ask a series

of workloads at a low accuracy (spending 𝜖1), and then re-query

the most interesting workloads at a higher accuracy (spending

𝜖2 > 𝜖1). The cumulative privacy budget spent by the MMM will

be 𝜖1 + 𝜖2 due to sequential composition. The goal of the Relax

Privacy module is to spend less privacy budget than MMM on such

repeated workloads with higher accuracy requirements.

Koufogiannis et al. [15] refine a noisy response at a smaller 𝜖1, to

a more accurate response at a larger 𝜖2, using only a privacy cost of

𝜖2 − 𝜖1 [15, 24]. However, their framework only operates with the



Algorithm 3 Relax Privacy (RP) (Section 6)

1: function answerWorkload(C,A,W, x)
2: 𝜼𝑜 ← ỹ𝑜 − A𝑜x ⊲ Old noise vector for A𝑜 .

3: 𝜼 ← lapNoiseDown(𝜼𝑜 , 𝑏𝑜 , 𝑏) ⊲ Koufogiannis et al. [15]

4: ỹ← A𝑜x + 𝜼 ⊲ New noisy responses to A𝑜

5: Update cache CA∗ with (A𝑜 , 𝑏, ỹ, 𝑡=current time)

6: ỹ′ ← ỹ for A ⊆ A𝑜 ⊲ New noisy responses to A
7: returnWA+�̃�′

8: function estimatePrivacyBudget(C,A,W, 𝛼, 𝛽)

9: 𝑏 ←MMM.estimatePrivacyBudget( C = ∅, A, W, 𝛼, 𝛽)

10: C ← {· · · (A𝑡 , ỹ𝑡 , 𝑏𝑡 ) } ⊲ Group queries in C by timestamp.

11: 𝑆𝑅𝑃 ← A𝑗 ∈ C𝑡=𝑗 |A𝑗 ⊇ A ⊲ Keep only those A𝑡 that contain A
12: if 𝑆𝑅𝑃 = ∅ then
13: return “RP cannot run for this input A.”

14: 𝑜 = argmin

𝑗

𝜖𝑅𝑃,𝑗 =
∥A𝑗 ∥1
𝑏
− ∥A𝑗 ∥1

𝑏 𝑗
⊲ A𝑜 has the lowest RP cost

15: return 𝑏𝑜 , 𝜖𝑅𝑃,𝑜 ⊲ Cached noise parameter, RP cost for A𝑜

simple Laplace mechanism. Thus, we achieve the aforementioned

goal by closely integrating their framework [15] with the matrix

mechanism and our DP cache.

6.1 Estimate Privacy Budget Interface
We first describe the estimatePrivacyBudget interface for RP,

and as with the MMM, it estimates the privacy budget required

by the RP mechanism. The privacy budget required for the RP

mechanism is defined as the difference between the new or target

privacy budget for the output strategy noisy responses ỹ to meet

the accuracy guarantees, and the old or cached privacy budget

(𝜖C ) that cached responses to A were obtained at. The target noise

parameter is the noise parameter required by the cacheless MM to

achieve an (𝛼, 𝛽)-accuracy guarantee forW,A. It can be obtained

by running the estimatePrivacyBudget of MMM with an empty

cache (line 9). Then the main challenge of this interface is to choose

which past strategy entries should be relaxed by the RP mechanism,

based on the smallest RP cost as defined above.

Each strategy query a ∈ A may be cached at a different times-

tamp. Relaxing each such set of cache entries across different times-

tamps, through sequential composition, requires summing over

the RP cost for each set, and can thus be very costly. For simplic-

ity, we design the RP mechanism to relax the entirety of a past

strategy matrix, rather than picking and choosing strategy entries

across different timestamps. Our RP cache lookup condition groups

cache entries by their timestamps to form cached strategy matri-

ces (Line 10), and identifies all candidate matrices that include the

entire input strategy (Line 11). The inclusion condition (instead

of an equality) allows proactively fetched strategy entries to be

relaxed, at no additional cost to relaxing A 𝑗 . If answering A using

the cache requires: (1) composing cache entries spanning multiple

timestamps, or (2) composing cache entries at one timestamp and

paid (freshly noised) strategy queries at the current timestamp, then

the RP cost estimation interface simply returns nothing (Line 12)

and CacheDP will instead use another module.

Example 6.1. Suppose that the workloads shown in Figure 1 have

been asked in the past at 𝛼1, and have been answered through

MMM, as discussed in Example 5.2. Now W3 = {[3, 8)} is asked at

𝛼3 < 𝛼1. We have A3 = {[3, 4), [4, 8)}. Thus A3 ⊂ P2 ∪ ΔP2, and

the RP module relaxes all of A3,𝑅𝑃 = P2 ∪ ΔP2 from 𝛼1 to 𝛼3.

For each candidate cached strategy matrix A 𝑗 , we compute the

RP cost to relax its cached noisy response vector ỹ𝑗 from 𝑏 𝑗 to the

new target 𝑏 as 𝜖𝑅𝑃,𝑗 . Lastly, the RP module chooses to relax the

candidate past strategy A 𝑗 with the minimum RP cost (Line 14). For

the chosen cached strategy matrix A𝑜 , we return the cached noise

parameter 𝑏𝑜 and the RP cost 𝜖𝑅𝑃,𝑜 .

6.2 Answer Workload Interface
The RP answerWorkload interface is a straightforward applica-

tion of Koufogiannis et al.’s noise down module. We first compute

the Laplace noise vector used in the past 𝜼𝑜 , by subtracting the

ground truth for the cached old strategy A𝑜x from the cached noisy

response 𝑦𝑜 (line 2). We can now supply Koufogiannis et al.’s noise

down algorithm with the old noise vector 𝜼𝑜 , the cached noise pa-

rameter 𝑏𝑜 , and the target noise parameter 𝑏. This algorithm draws

noise from a correlated noise distribution, and outputs a new, more

accurate noise vector at noise parameter 𝑏 (line 3) [15, Algorithm 1].

We can simply compute the new noisy response vector to 𝑦𝑜 using

the ground truth and the new noise vector (line 4). We then update

the cache with the new, more accurate noisy responses, which can

be used to answer future strategy queries (line 5). Finally, we do

not need the noisy strategy responses to A𝑜 − A to answer the data

analyst’s workload, and so we filter them out to simply obtain new

noisy responses 𝑦′ to A (line 6). We use 𝑦′ to compute the workload

response and return it to the analyst (line 7).

7 MULTIPLE ATTRIBUTE WORKLOADS
We extend CacheDP to work over queries with multiple attributes.

We define a single data vector x over dom(R) as the cross product
of 𝑑 single-attribute domain vectors. It represents the frequency of

records for each value of a marginal over all attributes. However,

|x| and thus |C| could be very large due to the cross product.

We observe that not all attributes may be referenced by analysts

in their workloads. Suppose that each workload includes marginals

over a set of attributes 𝑆A ∈ 𝑅. That is, each marginal w ∈ W
includes |𝑆A | = 𝑘 ≤ 𝑑 RCQs, with one RCQ over each attribute

(w =
𝑘

𝑗 w 𝑗 ). These workloads would share a common, smaller

domain and hence a data vector x𝑆A . Similarly, instead of creating

a large cache, we create a set of smaller caches, with one cache

C𝑆A for each unique combination of attributes 𝑆A encountered

in a workload sequence. Cache entries can thus be reused across

workloads that span the same set of attributes. The entries of each

smaller cache C𝑆A are indexed by its associated domain vector x
𝑆A

.

Our cache-aware MMM, SE and RPmodules can be extended triv-

ially to the multi-attribute case, since these modules would simply

operate on the larger domain vector. However, in order to generate

A, the ST module relies on a 𝑘-ary strategy tree, corresponding

to A∗ for the single-attribute case. Thus, we extend the ST and

PQ modules by defining this global strategy tree using marginals

over multiple attributes. Our extended ST and PQ modules serve as

a proof-of-concept that other modules can be extended for other

problem domains. We detail the multi-attribute strategy tree gen-

eration in our full paper [18]. We also discuss handling complex

SQL queries such as joins, in its future work section.



Dataset Adult [13] Taxi [2] Planes [6, 23]

Size 48842 × 14 1028527 × 19 500, 000 × 12
Tasks BFS (Age) BFS (Lat, Long) IDEBench

(Attributes) DFS (Country) DFS (Lat, Long) (8 out of 12)

Table 2: Datasets, their sizes, and associated tasks, with the
attributes or number of attributes used in each task.

8 EVALUATION
We conduct a thorough experimental evaluation of CacheDP . We

focus on our primary goal, namely, reducing the cumulative privacy

budget of interactive workload sequences over baseline solutions

(Section 8.2.1), while still meeting the accuracy requirements (Sec-

tion 8.2.2) and incurring low overheads (Section 8.2.3). We assess

how often each module is used, and quantify its impact on the

privacy budget, through our ablation study in Section 8.3.

8.1 Experimental Setup
8.1.1 Baseline Solutions. We consider a number of baseline, accuracy-

aware solutions from the literature to compare with CacheDP .

APEx [9]: APEx is a state-of-the-art accuracy-aware interactive

DP query engine. APEx treats all workload queries separately and

has no cache of previous responses.

APEx with cache: We simulate APEx with a naive cache of all

past workloads and their responses. If a client repeats a workload

asked in the past by any client, with the same or a lower accu-

racy requirement, we do not count its privacy budget towards the

cumulative budget spent by APEx with cache.

Pioneer [24]: Pioneer is a DP query engine that incorporates a

cache of previous noisy responses to save the privacy budget on

future queries. Since Pioneer can only answer single range queries,

we decompose all workloads into single queries for our evaluation,

and let Pioneer answer them sequentially.

8.1.2 Datasets and Tasks. In Table 2, we outline the datasets used

and the tasks that each dataset is used in. A common data ex-

ploration task involves traversing a decomposition tree over the

domain [31]. We construct our workloads through either a breadth-

first search (BFS) or a depth-first search (DFS); both of these tasks

are executed over a single attribute or a pair of correlated attributes

(Latitude and Longitude from the Taxi dataset). We also replicate

the evaluation of Pioneer [24] through randomized single range

queries (RRQ) over a single attribute of a synthetic dataset. We

use Eichman et al.’s benchmarking tool, namely IDEBench [6], to

construct a sequence of interactive multi-attribute workloads.

Wemodel multiple data analysts querying each system, as clients.

We run the BFS, DFS and IDEBench tasks with multiple clients. We

schedule the clients’ interactions with each system by randomly

sampling clients, with replacement, from the set of clients until no

queries remain. A client chooses the accuracy requirements and

task parameters for each run of the experiment independently and

at random; we detail these choices in the full paper [18].

8.2 End-to-end Comparison
8.2.1 Privacy Budget Comparison. We repeat each interactive ex-

ploration task 𝑁 = 100 times, and we compute the average cu-

mulative privacy budget for our solution CacheDP and baselines

(APEx, APEx with cache, Pioneer) over all 𝑁 experiment runs. We

plot the mean and 95% confidence intervals in Figure 3. We have

two hypotheses:

H1 The baselines arranged in order of increasing cumulative pri-

vacy budget should be: APEx, APEx with cache, Pioneer.

H1.1 Pioneer should outperform APEx with cache, since Pio-

neer saves privacy budget over any related workloads,

whereas APEx with cache only saves privacy budget over

repeated workloads.

H1.2 Baselines with a cache (APEx with cache, Pioneer) should

outperform the baseline without a cache (APEx).

H2 CacheDP should outperform all baselines.

First, we observe that hypothesis H1 holds for all tasks, other

than the single-attribute BFS and DFS tasks (Figures 3a, 3b). Since

we decompose each workload into multiple single range queries for

Pioneer, this sequential composition causes it to performworse than

APEx without a cache in the BFS task, and thus hypothesis H1.1

is violated. For the same reason, APEx with cache outperforms

Pioneer for the single-attribute DFS task, and so, hypothesis H1.2 is

violated. Though, we note that hypothesis H1.2 holds for the RRQ

task (Figure 3c). Our Pioneer implementation replicates a similar

privacy budget trendline to the original paper [24, Figure 15].

Hypothesis H2 holds for all tasks, and the cumulative privacy

budget spent by CacheDP scales slower per query, by at least a

constant factor, over all graphs. We note that in the RRQ task (Fig-

ure 3c), CacheDP spends more privacy budget upfront than the

other systems, since these systems use the simpler Laplace Mecha-

nism, which is optimal for single range queries over our underlying

Matrix Mechanism. However, any upfront privacy budget spent

by CacheDP is used to fill the cache, which yields budget savings

over a large number of workloads, as CacheDP requires an order of

magnitude less cumulative privacy budget than the best baseline

(Pioneer). We observe that even in the computationally intensive

tasks due to larger data vectors for two attributes (Figures 3d, 3e)

and multiple attributes (Figure 3f), CacheDP outperforms the best

baseline (APEx with cache), by at least a factor of 1.5 for Figure 3f.

For both DFS tasks (Figures 3b, 3e), since each experiment can

terminate after a different number of workloads have been run,

we observe large confidence intervals for higher workload indices

for each system. CacheDP simply returns cached responses to a

workload if they meet the accuracy requirements, whereas our

simulation forAPEx with cache resamples noisy workload responses

and may traverse the tree again in a possibly different path. Relaxed

accuracy requirements from different clients can lead to frequent re-

use of our cache (Section 8.1.2), and thus, we find that in Figure 3e,

CacheDP ends the DFS exploration faster than APEx with cache.

8.2.2 Accuracy Evaluation. Wemeasured the empirical error of the

noisy responses returned by all systems and found that they meet

the the clients’ (𝛼, 𝛽) accuracy requirements. Cached responses

used by CacheDP commonly exceed the accuracy requirements.

Specifically, when all strategy responses are free, CacheDP will

always return the most accurate cached response for each strategy

query, even if the current workload has a poorer 𝛼 .



(a) BFS - Adult (Age attribute) (b) DFS - Adult (Country attribute) (c) RRQ - Synthetic (1D)

(d) BFS - Taxi (Lat, Long attributes) (e) DFS - Taxi (Lat, Long attributes) (f) IDEBench - Planes (multiple attributes)

Figure 3: Average cumulative privacy budget comparison between CacheDP and baselines (APEx, APEx with cache, Pioneer).

8.2.3 Overhead Evaluation. We compute the following storage and

computation overheads for all systems, averaged over all 𝑁 experi-

ment runs: (1) cache size in terms of total number of cache entries

at the end of a run, and (2) workload runtime, averaged over all

workloads in a run. In Table 3, we present these overheads for

representative tasks. (Since our simulation for APEx with cache

only differs from APEx by a recalculation of the privacy budget

(Section 8.1), the latter has the same runtime as the former.) Our

cache size is limited by the number of nodes on our strategy tree,

and so for the RRQ task, which has 50𝑘 workloads, CacheDP has a

smaller cache size than the baselines. Whereas, in tasks with fewer

workloads, such as the IDEBench task, our PQ module inserts more

strategy query nodes into the cache, and thus, significantly in-

creases our cache size over the baselines. Nevertheless, since our

cache entries only consist of 4 floating points (32B), even a cache

with ≈ 25𝑘 entries would be reasonably small in size (≈ 800𝑘𝐵).
In terms of runtime, CacheDP only takes a few seconds per work-

load for single-attribute tasks, such as the DFS task, thereby match-

ing other cached baselines. As the number of attributes increases

in the IDEBench task, the cumulative cache size and runtime of

CacheDP scales linearly. Specifically, IDEBench workloads require

computations over a larger data vector that spans many attributes.

(We include a graph for these variables and discuss performance

optimizations in the extended paper.) Yet, non-optimized CacheDP

only takes around 6 minutes per workload for the IDEBench task,

and performs slightly better than APEx with cache.

8.3 Ablation study
Each of our modules contribute differently to the success of our

system across different workloads. We conduct an ablation study in

two parts analyzing our modules. First, we analyze the frequencies

at which each module is selected to answer a workload, and sec-

ond, we run a study to quantify the impact of each module on the

cumulative privacy budget. We begin with our frequency analysis,

noting that a module is chosen to answer a given workload if it is

estimated to cost the lowest privacy budget. We only include the

MMM, RP, and SE modules in this analysis, since the PQ module is

not involved in the cost estimation stage. We present the number

of times each module is chosen to answer a workload in each of the

BFS, DFS, RRQ and IDEBench tasks, averaged over 𝑁 = 100 runs, in

Table 4. If MMM reports 𝜖 = 0 for a workload, CacheDP simply uses

MMM to answer the workload using cached responses, and it does

not run RP or SE modules. We thus separately record the number of

free workloads per task in the first row of Table 4. First, we observe

that most workloads for each task are free, indicating that using

solely the cached strategy responses, CacheDP can successfully

answer most workloads for these tasks.

Second, considering all non-free workloads, each of the modules

are used the most frequently for at least one task. SE is chosen most

frequently for the BFS and DFS tasks, answering 52% and 64% of

non-free workloads respectively. Furthermore, for many workloads

in these tasks, we observed that MMM had 𝜖 > 0 cost, but under SE,

these workloads became free (𝜖 = 0). RP is chosen most frequently

for the IDEBench task (57%), whereas MMM is used most frequently

for the RRQ task (69%). Thus, we can see that each module plays a

role in CacheDP’s performance in one or more tasks.

We also run a study to quantify savings in the cumulative privacy

budget due to eachmodule.We rerun our single-attribute tasks (BFS,

DFS, RRQ) while disabling each of our modules (MMM, SE, RP, PQ)

one at a time, and present the cumulative privacy budget consumed

by each such configuration in Figure 4. The standard configuration



System Cache size (entries) Runtime (s)

RRQ IDEBench DFS - Adult IDEBench

APEx (cache) 3118±4 6540±0 2.71±0.02 456±70
Pioneer 3118±4 - 1.6±0.2ms -

CacheDP 1998±0 23666±1000 2.82±0.2 338±20
Table 3: Cache size and workload runtime comparison.

BFS DFS RRQ IDEBench

Free 164.8 ± 0.9 591 ± 6 49801 ± 3 216 ± 1
MMM 2.1 ± 0.1 2.25 ± 0.09 137 ± 3 15.1 ± 0.2
RP 14.7 ± 0.5 21.1 ± 0.5 1.4 ± 0.1 31 ± 1
SE 18.5 ± 0.6 42 ± 1 60 ± 4 7.8 ± 0.2

Table 4: Average number of times each module was chosen
for each task; most frequently chosen modules are in bold.

Figure 4: Ablation study over PQ, RP, SEmodules of CacheDP

consists of all modules turned on. (Turning an effective module

off should lead to an increase in the cumulative privacy budget,

in comparison to the standard configuration.) First, we observe

that the standard configuration performs the best in all three tasks,

while considering CI overlaps. Therefore, data analysts need not

pick which modules should be turned on in order to answer a

workload sequence with the lowest privacy budget. Second, the

PQ module significantly lowers the cost for the BFS and RRQ task,

proactively fetching all (≈ 12) queries in a BFS workload at the cost

of one strategy node. Third, the RP module also lowers the cost for

BFS, when the same workload is repeated by other clients.

Fourth, turning the SE module off only contributes to minor

differences in the cumulative privacy budget (𝐵𝑐 ). However, the

reader may expect that turning the SE module off would lead to a

higher 𝐵𝑐 , since based on the frequency analysis, the SE module is

most frequently chosen to answer non-zero workloads for the BFS

and DFS tasks. We reconcile this discrepancy with the observation

that the SE module provides savings on earlier workloads, through

constrained inference, at the cost of a less accurate cache to answer

future workloads. In summary, different tasks exploit different

modules and the standard configuration incurs the least privacy

budget, and thus data analysts need not turn off any modules.

9 RELATEDWORK
Constrained inference techniques have been applied in the non-

interactive DP setting to improve the accuracy of noisy query re-

sponses [25, 31] and in synthetic data generators [10, 19, 26] to infer

consistent answers from a data model built through noisy measure-

ment queries. However, these systems do not provide any accuracy

guarantee on the inferred responses. If the analyst desires a more

accurate response than the synthetic data can offer, no privacy bud-

get remains to improve the query answer [27]. Our work applies

DP constrained inference in an interactive setting so that we can

spend the privacy budget on queries that the analyst is interested in

and meet their accuracy requirements. On the other hand, existing

accuracy-aware DP systems for data exploration [9, 21], releasing

data [8, 22], or programming frameworks [28, 30] do not exploit

historical query answers to save privacy budget on a given query.

We design a cache structure and inference engine extending one of

these accuracy-aware systems, APEx [9].

Peng et al.’s Pioneer [24] is the most relevant work that uses

historical query answers to obtain accurate responses to upcoming

single range queries. However, CacheDP can handle workloads

with multiple queries. Second, it supports multiple, complex DP

mechanisms and chooses the mechanism that uses the least privacy

budget for each new workload. Third, our PQ module (Section 5.3)

proactively fetches certain query responses that can be used later

at no additional cost. Finally, CacheDP can answer multi-attribute

queries through our extended ST module (Section 7).

Our key modules are built on top of prior work (e.g., Li et al.’s

Matrix Mechanism [16], Koufogiannis et al.’s Relax Privacy Mecha-

nism [15]), such that existing interactive DP systems that make use

of these mechanisms (e.g. PrivateSQL [14], APEx [9]) do not have

to make significant changes; these systems can include a relatively

light-weight cache structure and cache-aware version of the DP

mechanisms. Integrating a structured, reusable cache with these

mechanisms has its own technical challenges, such as the Cost Esti-

mation problem (Section 4.3.2), Full Rank Transformation problem

(Section 5.1.2), as well as optimally reusing the cache (Section 5.2)

and filling it (Section 5.3).

10 CONCLUSION
We build a usable interactive DP query engine, CacheDP , that uses

a structured DP cache to achieve privacy budget savings commonly

seen in the non-interactive model. CacheDP supports data ana-

lysts in answering data exploration workloads accurately, without

requiring them to have any DP knowledge. Our work provides re-

searchers with a methodology to address common challenges while

integrating DP mechanisms with a DP cache, such as, cache-aware

privacy budget estimation (MMM), filling the cache at a low privacy

budget (PQ), and maximizing cache reuse (SE).
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