
Peer2PIR: Private Queries for IPFS

Miti Mazmudar
University of Waterloo

Shannon Veitch
ETH Zurich

Rasoul Akhavan Mahdavi
University of Waterloo

Abstract—The InterPlanetary File System (IPFS) is a peer-
to-peer network for storing data in a distributed file system,
hosting over 190,000 peers spanning 152 countries. Despite its
prominence, the privacy properties that IPFS offers to peers
are severely limited. Any query within the network leaks the
queried content to other peers. We address IPFS’ privacy
leakage across three functionalities (peer routing, provider
advertisements, and content retrieval), ultimately empowering
peers to privately navigate and retrieve content in the network.
Our work highlights and addresses novel challenges inherent to
integrating PIR into distributed systems. We present our new,
private protocols and demonstrate that they incur reasonably
low communication and computation overheads. We also pro-
vide a systematic comparison of state-of-art PIR protocols in
the context of distributed systems.

1. Introduction

Peer-to-peer (P2P) applications and networks have been
widely used for decades and new networks, such as the Inter-
Planetary File System (IPFS), are being rapidly developed.
IPFS is a P2P network hosting over 190,000 peers spanning
152 countries [58], making it one of the most widely used
distributed file systems. The IPFS ecosystem [50] includes
many projects that facilitate building decentralized web
applications. For example, Fleek [21] serves as a decen-
tralized content distribution network backed by IPFS. Space
Daemon [22] enables building distributed applications that
process users’ data privately on their own IPFS nodes.

Although IPFS has proven itself to be an effective
platform for a decentralized web, the current model pro-
vides limited privacy to users and lags far behind recent
advancements in protecting Internet users. There has been
significant adoption on the Internet of DNS-over-Encryption
protocols, such as DNS-over-HTTPS and DNS-over-TLS
[29], [30], [35]. These alternatives to unencrypted DNS
prevent malicious parties, ISPs, and others from observing
the domains that are being accessed by users. Meanwhile in
IPFS, data sent between two parties is encrypted, akin to In-
ternet traffic being encrypted with TLS; however, any query
within the IPFS network leaks to other peers the content for
which a peer is querying, akin to a DNS query. Encrypting
messages between peers prevents passive observers from
viewing information, but by revealing it to intermediate
peers, a client’s privacy is severely undermined. Although
distributed systems are lauded for their privacy guarantees,
in reality, the current state-of-the-art falls behind the privacy

offered in the centralized setting. Protecting the content of
queries from intermediate peers is the natural next step to
improve the privacy of IPFS, and provide users with end-
to-end protection of their query content.

IPFS provides three high-level functionalities to its
peers. First, it arranges peers in an overlay topology such
that each peer can contact and communicate with any other
peer efficiently. IPFS implements this functionality of peer
routing using distributed hash tables (DHTs). Second, peers
can advertise to other peers that they provide a file. The
provider advertising functionality enables any peer on the
network to discover which other peers provide a desired file.
Third, a peer can directly contact another peer that provides
a file and retrieve the file from them. The two peers engage
in a content retrieval protocol to share that file. Each of
these three functionalities is performed through protocols
involving queries between different pairs of peers.

Consider a peer acting as a client and another as a server
in IPFS, where the server peer is storing content and is
assumed to be a passive adversary. In each of the three
aforementioned functionalities, the client reveals what it is
querying for to the server. Peer routing reveals which peer
the client is attempting to contact. In provider advertisement
and content retrieval queries, a server learns which file the
client wishes to retrieve.

Prior work addressed only one of these problems in
isolation, e.g., by enabling confidentiality for the target file
in content retrieval [15], [16] or obfuscating the target peer
in peer routing [44]. However, replacing one aspect of the
system with a private version is insufficient if the remainder
of the system leaks the queried content. For example, a
server peer can learn a target file through a provider routing
query, even if it is hidden in a content retrieval query.
Additionally, privacy of provider advertisements has not
previously been addressed.

This work proposes an end-to-end solution for IPFS that
hides the content a client queries for and retrieves from
a server. Ours is the first work to address this problem
holistically across IPFS protocols for peer routing, provider
advertising, and content retrieval. Not only is the content of
clients’ queries then protected from intermediate peers, but
also from the final peer from whom they collect the content.
Ultimately, no one within the network learns the content
which a peer is retrieving. In developing our solution, we
handle challenges inherent to DHTs, such as a dynamic net-
work with churn, and varying amounts of content stored at
each peer. Therefore, our resulting techniques are applicable
to a wider range of distributed systems. Towards developing

4438

2025 IEEE Symposium on Security and Privacy (SP)

© 2025, Miti Mazmudar. Under license to IEEE.
DOI 10.1109/SP61157.2025.00231

20
25

 IE
EE

 S
ym

po
siu

m
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

 9
79

-8
-3

31
5-

22
36

-0
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SP

61
15

7.
20

25
.0

02
31

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

this solution, we present the following building blocks:
• a novel routing algorithm that enables an end-to-end

procedure for privately contacting a peer (Section 5);
• generic binning and hashing techniques to adapt data-

stores to be amenable to PIR, applied to provider
advertisements and content retrieval (Sections 6 and 7);

• a scalable and private adaptation of an interactive con-
tent retrieval protocol (Section 7); and,

• a systematic comparison of state-of-the-art PIR proto-
cols in the context of distributed systems (Section 8).

Furthermore, for our use cases in DHTs, existing PIR
protocols do not provide a reasonable communication-
computation tradeoff. To address this gap, we present new
PIR protocols, using techniques from cryptographic folklore
and PIR literature (Section 8.2), which are optimized for
small databases. We prove the security of our PIR protocols
and demonstrate that they outperform the state-of-the-art.

Our performance evaluation demonstrates the feasibility
of our system in terms of communication and computation
costs. Our private peer routing and provider advertisement
queries can be answered in less than 100ms and 1.5s,
respectively. We believe that these are reasonable latencies
for the IPFS system, given the benefit of added privacy.
Furthermore, our private protocols do not incur additional
rounds and our private peer routing protocol does not signif-
icantly increase the number of hops over the original routing
algorithm. Our system is modular in that it enables substitut-
ing PIR protocols for each of the three functionalities, and
thus Peer2PIR directly benefits as PIR protocols become
more efficient. We integrate our protocols into the IPFS
codebase, highlighting and addressing privacy engineering
challenges faced along the way.

2. Background

2.1. Distributed Hash Tables & IPFS

Distributed hash tables (DHTs), such as Kademlia [38]
and Chord [55], are analogous to conventional hash tables,
with the exception that the entire key-value store is sys-
tematically split across peers in the network so that queries
can be conducted efficiently. Importantly, both the content
stored for the application and the routing information for
the P2P network are distributed among peers. P2P networks
grow dynamically: the rate at which peers leave and rejoin
the network is the node churn rate. Though each peer
can answer and conduct queries, throughout this paper, we
designate peers as clients when they are conducting queries
and as servers when they are responding to queries. IPFS is a
distributed file system built on the Kademlia DHT [32], [58].
Next, we describe the three main functionalities provided
by IPFS: contacting another peer in the DHT, discovering
which peers provide desired content, and retrieving content
from a peer. Figure 1 visualizes these functionalities, along-
side our private alternatives.
Contacting a Peer. Each peer in a DHT has a peer identifier
(peer ID) that is the output of a cryptographic hash function.

For example, in IPFS, peer IDs are given by a hash of
the peer’s public key. Each peer in the DHT maintains
a routing table consisting of peer IDs and their routing
information, for a small number of other peers in the DHT.
The routing information consists of multiaddresses which
encode IP addresses and ports, as well as peer IDs. To reach
a target peer, a client obtains relevant routing information
by querying one of its neighbours for the target peer ID,
and then querying one of that neighbour’s neighbours, and
so on, through an iterative routing process. DHTs guarantee
that each peer can reach any other peer in a network of size
n, without a trusted central party, through approximately
log(n) routing queries. Importantly, each such routing query
will reveal the target peer ID to the in-path peers. The IPFS
routing algorithm in the context of the Kademlia DHT is
discussed in Section 5.1.
Discovering Peers Providing Content. IPFS decomposes
each file into multiple content blocks, using either fixed
or adaptively sized chunks [26], [49]. Each content block
in IPFS is addressed by a content identifier (CID), which
includes a collision-resistant one-way hash of the block.
CIDs remove the need for a central party to address content
and are also used to verify the integrity of a content block.
A peer who provides a content block in IPFS, namely a
provider peer, also advertises this fact to the DHT, through
provider advertisements. A provider advertisement maps a
given CID to its providers’ peer IDs. Each peer maintains
a provider store with provider advertisements. So a client
who wishes to discover the peers who provide a given CID,
should query the server peers’ provider store for the target
CID. (This query occurs simultaneously with the afore-
mentioned routing query, as we describe later.) Evidently,
through this query, the server peer learns the target CID
that the client wishes to access. We describe IPFS provider
advertisements in Section 6.1.
Retrieving a Content Block. Once a client determines the
provider peer for a target CID, it proceeds to retrieve the
content block. Content retrieval in IPFS is accomplished us-
ing Bitswap [18], a content exchange protocol for retrieving
a content block with a given CID from a connected peer. We
detail the Bitswap protocol in Section 7.1 and note that the
server learns the target CID that the client wishes to fetch
as well as the content block that it returns.

2.2. Private Information Retrieval

Private information retrieval (PIR) protocols allow a
client to retrieve an item from a database, held by one or
more servers, such that the servers do not learn which item
is retrieved. Information-theoretic PIR (IT-PIR) schemes
provide perfect secrecy in the presence of computationally
unbounded adversaries. Many efficient IT-PIR schemes exist
in the multi-server setting [4], [9], [14], [19]; however,
they rely on assumptions that are difficult to achieve in
practice, as discussed in Section 9. In contrast to IT-PIR,
computational PIR (CPIR) schemes rely on hardness as-
sumptions and assume a computationally bounded adver-
sary. We mainly focus on CPIR schemes for our protocols.

4439

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

Client

Wants CID C

P4

Holds Content C

P3P1 P2

1
&

2

3
P2 &

4
5 & 6

7 P3 & 8
9 &

10

11 & 12 P4

13

14

� Standard IPFS � Ours (Peer2PIR)
1 5 9 Peer routing request Peers near Hash(C)? PrivPeerRoutingQuery(C)
2 6 10 Prov. advert. request Provs. for C? PrivProvAdQuery(C)

3 7 11 Peer routing response PID PrivPeerRoutingResp(PID)
4 8 12 Prov. advert. response PID/None PrivProvAdResp(PID/None)

−→ 13 Content retrieval request WantHave C? / WantBlock C PrivWantHave(C)
14 Content retrieval response Have / Block C PrivBlock(C)

Figure 1: Overview of the IPFS peer routing, provider routing, and content retrieval protocols, and our private versions.

We defer the formal definition of PIR to Section B.1. While
PIR schemes ensure that the server does not learn which
record is retrieved, symmetric PIR (SPIR) schemes also
guarantee that the client learns only the record for which
they query, similar to oblivious transfer (OT).
IndexPIR vs. KeywordPIR. PIR schemes often assume the
client knows the index of the desired row in a table; these are
known as IndexPIR schemes. KeywordPIR schemes enable
a client to retrieve a value from a key-value store, given
that they know the key. KeywordPIR schemes privately
match keywords, and thus incur communication overhead
over IndexPIR schemes [1], [37]. PIR over key-value stores
can be performed using IndexPIR, with an extra round of
communication and a small probability of error. The server
constructs a hash table, mapping each key to an index in
the table. It places the associated value into the indexed
row of the hash table and sends the chosen hash function to
the client. The client uses the hash function and its desired
keyword to calculate the index for its desired row in the hash
table and uses IndexPIR to retrieve that row. As modern
DHTs involve key-value stores in their design, we use this
transform to efficiently conduct IndexPIR. We exploit the
fact that CIDs themselves include hashes, to enable the client
to compute the index for a CID (within the server’s hash
table), without an extra round.
PIR in Distributed Settings. The DHT setting presents
challenges in immediately applying PIR. First, the key-value
stores have varying numbers of records and record sizes.
While the routing table is upper-bounded in size, the number
of provider advertisements and content blocks on each peer
follows a long-tail distribution, as we discuss in Section 4.
Since PIR schemes are typically optimized for one database
size, one scheme does not fit all three of our use cases. Sec-
ond, we seek to minimize the communication overhead of
PIR queries, to prevent congesting the distributed network,
while maintaining reasonable computational overheads for

individual peers. Furthermore, existing schemes commonly
assume that clients repeatedly query the same server, amor-
tizing communication cost over many queries. However,
across all types of queries that we consider, a peer acting
as a client routinely contacts different peers. Thus, a direct
application of state-of-the-art PIR protocols optimized for
communication overhead is not possible for our use cases.

3. Related Work

Private Routing and Provider Advertisements. The re-
cently proposed Double Hashing [43], [44] aims to improve
client privacy when querying for content in IPFS. The
approach requires that a client query for a prefix of the CID
as opposed to the entire CID, thus providing the client with
plausible deniability about which content it is querying for.
A server returns provider advertisements corresponding to
any CID matching this prefix. The client thus obtains k-
anonymity where k is the number of CIDs with a matching
prefix. We provide stronger guarantees to both the client and
the server. The client hides the entire CID, instead of just
the suffix, from the server. The server is guaranteed that the
client does not learn other CIDs stored by the server.
Private Content Retrieval. Daniel et al. [15] provide
plausible deniability to peers by integrating a gossip protocol
into Bitswap, in which peers forward messages on each
other’s behalf. While their work obscures the source of
a query, we protect the content of a query. Daniel and
Tschorsch [16] present two protocols to hide the target CID
from the server during the content discovery step of Bitswap.
However, the first protocol leaks the entire list of CIDs to
the client, whereas the second protocol relies on computa-
tionally expensive Private Set Intersection (PSI) operations.
Both protocols reveal the target CID to the server during
the content retrieval step. Mazmudar et al. [39] incorporate
IT-PIR into DHTs to hide the content that clients retrieve

4440

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

within the network. This approach relies on grouping peers
into quorums which contain a bounded fraction of malicious
nodes. Under this assumption, their construction can take
advantage of existing protocols [6], [60] for robust DHTs,
enabling integrity and confidentiality of routing queries
within the DHT. We discuss challenges with incorporating
similar strategies into IPFS in Section 9. Keyword search
schemes for IPFS enable a client to retrieve a file, given a
representative keyword rather than its CID [12]. They also
reveal the keyword to server peers.

4. Threat Model

We consider a peer acting as a client and an adversarial
peer acting as a server. We aim to hide the content the
client queries for and retrieves from the server, across three
queries:
• Peer routing queries: the client fetches routing informa-

tion for a target peer ID from a server.
• Provider advertisement queries: the client fetches which

peers provide a target CID, as well as the routing infor-
mation to reach these provider peers.

• Content retrieval queries: the client fetches a block from
a server peer, given its target CID.

We hide the target peer ID from each intermediate server
peer during peer routing queries. We hide the CIDs during
provider advertisement and content retrieval queries. Addi-
tionally, the server peer cannot determine these identifiers
based on its response to a client’s query. This strictly im-
proves over IPFS, as it currently only encrypts communica-
tion between peers at the transport layer [51].

We assume that all peers within the network are honest
but curious, i.e., they correctly follow prescribed protocols
but may passively observe their execution to infer informa-
tion. We briefly outline non-goals before contextualizing our
guarantees for provider advertisements and content retrieval.
Non-Goals. We do not aim to protect the client’s network
identity. Instantiating a distributed file system such as IPFS
over Tor onion services to provide client anonymity is out
of our scope. We do not protect content publishing requests,
i.e., peers know that a server peer is storing a given CID
(via provider advertisements or by querying the server for
the content block). Since CPIR schemes add significantly
more computational overhead for the server than the client,
a malicious client can exploit our CPIR-based schemes to
amplify a denial of service attack against any peer. Standard
rate-limiting based on the client’s peer ID and network
identity can deter such DoS attacks.
Peer Routing. Servers may cause an honest client to
experience a restricted view of the network through eclipse
attacks. A server peer may respond incorrectly to a client’s
routing request, directing it to other malicious server peers.
Prünster et al. [52] demonstrated an eclipse attack against
IPFS, which has since been fixed. While we do not prevent
eclipse attacks, we do not make IPFS peers more vulnerable
to these attacks, e.g. by releasing a client’s routing table.
Provider Advertisements and Content Retrieval. We
provide server privacy for these two use-cases. We ensure

that a client can only retrieve a provider advertisement
or a content block if it knows the corresponding CID.
In other words, the client should not be able to retrieve
information stored by a server peer corresponding to CIDs
that are unknown to the client. Separately, we observe that
the privacy guarantees afforded to a client depend on the
amount of content stored by server peers. The amount of
provider advertisements stored by each peer in IPFS follows
a long tail distribution [56]. So it is highly likely that a client
will query a heavyweight content provider for both provider
advertisements and content blocks, and its target CID will be
indistinguishable from millions of others. Moreover, assum-
ing that a peer stores files of different sizes, the number of
content retrieval queries made by the client may leak which
file is being retrieved. We cannot prevent this attack without
changing how content blocks are duplicated in IPFS.
Colluding servers. Server peers do not learn any infor-
mation about a client’s query by sharing and examining the
client’s PIR queries, as these rely only on computational
assumptions, and not on non-collusion assumptions. Never-
theless, server peers could share that they received a peer
routing query (or provider routing or content retrieval query)
from the client’s network address or peer ID. Based on the
volume and sequence of (encrypted) traffic sent by the client
to these server peers, they can then narrow down the search
space of possible target peer IDs (or target CIDs) that the
client is looking for. Wang et al. [59] evaluate the feasibil-
ity of such traffic correlation attacks against the Kademlia
DHT with non-private peer and provider routing queries;
such attacks could be extrapolated to our system. Exist-
ing information-theoretic systems for private queries over
DHTs, such as Mazmudar et al.’s DHTPIR (see Section 9),
are also vulnerable to such traffic correlation attacks, since
similar to our work, they do not provide client anonymity.

5. Private Peer Routing

In this section, we focus on how a server answers a
client’s query for a target peer ID without revealing the
peer ID to the server. We first outline the Kademlia DHT
routing process, highlighting how a server uses its routing
table. We then propose an algorithm to adapt the routing
table to enable hiding target peer IDs from the server and
demonstrate its correctness. Finally, we integrate a PIR
scheme to privately retrieve a bucket from our modified
routing table, leading to a private peer routing algorithm.

5.1. Kademlia and the IPFS Routing Table

Kademlia DHT. DHTs map both the content identifiers and
peer identifiers to a common virtual address space, through
a collision-resistant one-way hash. IPFS uses SHA-256 to
form the virtual address space for its underlying Kademlia
DHT. Kademlia measures distance between two addresses
by computing an XOR between them and interpreting the
result as an integer. For example, the addresses 0b00011
and 0b00101, in an example 5-bit address space, are
0b00110=6 units apart. They share the first 2 bits and are

4441

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

said to have a common prefix length (CPL) of 2. Addresses
with higher CPLs are said to be closer to one another.
Routing Table Structure. The routing table (RT) is indexed
by CPLs. When a peer is added to an RT, the peer first
computes the CPL between itself and the new peer. Each
row of the RT contains multiaddresses for at most k peers
whose CPL is given by the row index. In other words,
higher indices of the RT contain closer peers. In IPFS,
each row (also called bucket) can have up to k = 20
peers’ multiaddresses. When a peer first joins the network,
it contacts a set of bootstrapping peers to populate its RT.
Whenever a peer comes into contact with another peer in
the DHT, it may create a new bucket for this peer or fill up
an existing bucket, depending on the CPL between the two
peers. Buckets are created dynamically, so a bucket with
index i is created only when the peer has met at least k
additional peers whose CPL is greater than or equal to i. If
an existing bucket is full, then the new peer is not stored in
the RT, leading to Kademlia preferring longer-lived peers.
In general, the RT can have buckets of unequal sizes.
Kademlia Lookup. We focus on how a server uses its
RT to answer a client’s query for the target peer ID. If the
bucket in the RT given by the CPL between the target and
the server’s peer IDs is full, then the server returns that
bucket. Otherwise, it selects peers from other buckets to
return a set of k closest peers. It does so by computing the
distance between the target peer ID and the remaining peer
IDs in the RT to select the k closest peers. As long as the
RT has at least k peers in total, for any lookup, the server
returns the multiaddresses for k peers. The client then uses
the multiaddresses to contact these peers, which are closer
to the target peer than the server peer. The client iteratively
queries different server peers until it reaches the target peer.
Challenges in Hiding the Target Peer ID. Our goal is
to enable the server to respond to the client’s query, while
hiding the target peer ID. Suppose that the server only learns
the bucket index, namely the CPL between its own peer ID
and the target peer ID. (We ultimately hide this index as
well, via PIR, as we discuss later.) If the server’s bucket for
this CPL is full, then it simply returns this bucket. However,
if it is not full, then only knowing the CPL is insufficient
to complete the original Kademlia lookup. In particular, the
suffix of the target peer ID is used to compute distances
to peers in other buckets, and select the closest ones. A
naive approach might return the bucket corresponding to
the CPL, even if it is full; however, non-full buckets would
be insufficient for the client to reach the target peer, and the
bucket size could leak its index. To solve the problem of
non-full buckets, the server can compute the k-closest peers
for every target peer ID. This approach blows up the RT,
which originally has at most 256 rows, to 2256 rows.

We propose normalizing the RT, i.e., ensuring that each
bucket has exactly k peers closest to any target peer ID
whose CPL is given by the bucket index. We present an
algorithm for normalizing the RT buckets. We introduce a
small amount of randomization when selecting closest peers
while knowing only the target peer’s CPL. We demonstrate
that our algorithm introduces only a constant overhead to the

number of hops that the client must perform, for any target
peer ID, in comparison to the original Kademlia lookup.
In practice, as we show next, our algorithm introduces
negligible to no overhead.

5.2. Routing Table with Normalized Buckets

We present our normalization algorithm (Algorithm 1)
and describe it next. The client wishes to retrieve a target
bucket indexed by t, where t is the CPL between the
target and the server’s peer IDs. As in the original lookup
algorithm, if the RT has at most k peers in total, all peers
are returned (Line 4). Since buckets are created dynamically,
the RT may have r < t buckets, in which case the server
returns the (normalized) last bucket, containing the closest
k peers that it knows (Line 6). If the target bucket is full, it
is returned directly (Line 9).

Algorithm 1 Routing Table Normalization Algorithm

1: i ∈ [0, r = len(RT)], bucket Bi corresponds to CPL i.
Input: Target index t

2: R← ∪r
i=0Bi

3: if |R| ≤ k then ▷ RT has less than k peers
4: return R
5: if r < t then ▷ If r < t, return last bucket
6: t← r
7: R← Bt

8: if |R| == k then
9: return R

10: else ▷ R is not full (|R| < k)
11: if t < r then ▷ Closer buckets can be used
12: C ← ∪r

i=t+1Bi

13: if |C| ≤ k − |R| then
14: R← R ∪ C
15: else append k − |R| peers from C to R at random
16: if |R| < k then ▷ Must go through farther buckets
17: ℓ← t− 1
18: while |R|+ |Bℓ| ≤ k do
19: R← R ∪Bℓ

20: ℓ← ℓ− 1
21: Bℓ ← {Bj

ℓ} ▷ Sort peers in Bℓ by distance to server
(smaller j = closer to server)

22: m← 1
23: while |R|+ |Bm

ℓ | ≤ k do
24: R← R ∪Bm

ℓ

25: m← m+ 1
26: append k − |R| peers from Bm

ℓ to R, at random.
27: return R

We observe that a peer in a bucket t would share the
common prefix of length t not only with the server peer, but
also with peers in closer buckets (t+1 ≤ i ≤ r). Whereas its
common prefix with peers in farther buckets (0 ≤ i ≤ t−1)
is given by the index of the farther bucket. In particular,
a peer in a bucket t is closer to peers in buckets that are
closer to the server and farther from peers in buckets that
are farther from the server. Thus the server prefers filling
a bucket with peers from closer buckets over farther ones
(Line 11). Importantly, without knowing the suffix of the
target peer ID, the server cannot order peers in these closer

4442

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

buckets in terms of their distance to the target. So, the server
picks the remaining number of peers at random from all
closer buckets, taking all closer peers if there are less than
k such peers (Lines 13–15).

If bucket t remains non-full, the server then adds farther
buckets one at a time (Lines 18–20). If the server cannot add
a bucket completely, then it partitions the bucket into equiv-
alent subbuckets, based on its distance to them (Line 21),
as illustrated in Example 5.1. The server then adds each
subbucket one at a time (Line 23–25), selecting peers at
random if it cannot include the entire subbucket (Line 26).

Example 5.1. A server with peer ID 0b0011 has 2 buckets:
• B2 with the common prefix 0b00XX. It can contain

peers with IDs 0b001X. It currently has 0b0010.
• B1 with the common prefix 0b0XXX. It can contain

peers with IDs 0b01XX. It currently has 0b0101,
0b0111, 0b0110.

Suppose we wish to normalize B2 to k = 3 peers. Peers
in B1 that are closest to B2 would share the later bit(s) of
the common prefix, i.e. they would be of the form 0b011X,
so that 0b001X⊕ 0b011X is minimized to [4, 6). We can
partition B1 into: B1

1 = 0b011X = {0b0111,0b0110}
and B2

1 = 0b010X = {0b0101}. Then, a normalized B2

would contain {0b0010,0b0111,0b0110}.
Convergence. We prove and experimentally verify that
our normalized algorithm does not significantly increase the
number of hops required to reach a target peer. At a high
level, the argument follows from the fact that the only cases
in which the normalized algorithm diverges from the original
still provide the same guarantee of closeness to the target
peer. In the lemma, KADEMLIA refers to the original routing
algorithm and PRIV-KADEMLIA refers to our normalized
routing algorithm. We defer the proof to Section A.

Lemma 5.1 (Convergence of Private Routing). If KADEM-
LIA converges in ⌈log n⌉+ c1 hops, then PRIV-KADEMLIA
converges in ⌈log n⌉+ c2 hops for some constants c1, c2.

We experimentally evaluated our normalized routing
algorithm against the Trie-based routing algorithm currently
deployed in IPFS to determine the difference in the number
of hops required to reach a target peer. We simulated a
network that mirrors the topology of IPFS and queried
for different target peer IDs, tracking the number of hops
required by each algorithm. Our experiments verify Lemma
5.1 and show that in practice, normalizing the routing table
introduces negligible to no difference in the number of hops.

To capture a meaningful network topology, we crawled
the active IPFS network using the Nebula crawler [57] and
collected an adjacency list of all dialable peers and their
neighbours. Our crawl collected 13692 peer IDs from the
network; we note that no network addresses were gathered.
For each peer, we set up a Trie-based RT using the current
Kademlia implementation and a normalized RT using our
new algorithm. We instantiated our experiment with the
same parameters as IPFS: for each step of the routing
process, the client concurrently queries three closest peers
it knows to the target peer ID and retrieves k = 20 nearest

peers from them. The process is repeated iteratively until
the target peer is found. We tested 5000 target peer IDs at
random, from a constant client peer.

All queries took an average of two hops to reach the
target, with a maximum of six hops. We did not find a
difference in the number of hops using the Trie-based and
the normalized routing algorithms, that is, both algorithms
required an identical number of hops in every iteration of
our test. Thus, our normalized routing algorithm imposes
negligible overhead over the original routing algorithm.

5.3. Private Algorithm Integration

Integrating our normalization algorithm into IPFS gen-
erates privacy engineering challenges. For instance, the con-
tents of the RT in practice differ from the Kademlia model.
We discuss why PIR is optimal for privately retrieving
buckets from the RT, and then integrate our algorithm with
PIR to develop a private peer routing solution.
Dynamic Networks. IPFS is a dynamic network with high
churn, meaning that nodes often join and leave the network.
Consequently, clients’ RTs are regularly updated in order
to reflect new or failing peers. We require normalizing the
RT every time a new peer is added to it. Since routing
tables are relatively small and the normalization algorithm
is not computationally intensive, this does not impose any
prohibitive overhead on the clients.
Joining Peer IDs and Addresses. We have thus far as-
sumed that the RT stores multiaddresses to peers. In practice,
the RT in IPFS stores only the peer IDs, and an additional
address book maps peer IDs to their multiaddresses. This
allows multiaddresses to be stored only once and used for
peer and provider routing. A non-private lookup uses the
value fetched from the RT as a key to lookup the address
book; this is evidently not possible when privately retrieving
buckets from the RT. Therefore, in our implementation,
the server joins the two key-value stores, namely the RT
storing peer IDs and address book storing multiaddresses,
before responding to a private query. This enables PIR to be
performed over one table rather than two. The join must be
recomputed when either store is updated, which is a function
of the node churn rate.
Selecting a PIR scheme. Following normalization and join
steps, we must hide the target CPL from the server. The RT
is limited in both its number of rows (≤ 256) and the size
of each row (multiaddresses for k = 20 peers).

Using trivial PIR, the server would provide the entire
RT to the client, foregoing normalization and joining; how-
ever, trivial PIR makes the server susceptible to eclipse
attacks [52]. Alternatively, OT would restrict the client
to retrieving only one row and prevent leaking other rows’
contents. However, efficient OT algorithms typically involve
encrypting each row of a table with a different key and
then obliviously transferring a cryptographic key to a client,
making the total communication cost greater than the size of
the table. This introduces a trade-off between information
leaked to clients about other rows in the table and com-
munication cost. Given that IPFS does not restrict a client

4443

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

from repeatedly querying a server for different target peer
IDs, i.e., rows in the routing table, we determine that the
minimal leakage guarantee provided by OT does not justify
the communication overhead. Rate-limiting on the server
peer can reduce the susceptibility of server peers to eclipse
attacks. We thus opt for PIR with rate-limiting.

We design an IndexPIR scheme based on RLWE,
namely RLWEPIR, catered to our private routing use case.
This scheme and design rationale are detailed in Section 8.
PIR Integration. A client first computes the CPL between
the target peer ID and the server peer ID, which it uses to
construct a PIR query. The server uses the PIR query and its
joined, normalized routing table, to compute a PIR response,
which is returned to the client. The client processes the
response to obtain multiaddresses of k peer IDs close to the
target peer ID. PIR hides the target CPL from the server.
Security. Interactions between the client and the server
now consist only of PIR queries and responses, so security
follows directly from that of RLWEPIR, as in Section 8.

6. Private Provider Advertisements

We describe provider advertisements in IPFS, namely,
how clients determine which peers provide the desired con-
tent block, and introduce our private alternative.
Notation. The following notation is useful for the next two
sections. Each peer stores m content blocks, each having
a unique CID. We refer generically to a CID as c. A peer
holds an ordered list L of CIDs of the content blocks they
store. We refer to the i-th CID by L[i]. We refer to the
first ℓ bits of the CID by the notation [: ℓ] and so L[i][: ℓ]
refers to an ℓ-bit prefix of the i-th CID in L. We form a
table D consisting of all content blocks, ordered by their
CIDs, such that D[i] is the content block for the i-th CID
in L. Each peer also maintains a provider store P , which
maps each CID for which the peer knows a provider, to
the provider peers’ IDs. The address book M maps a peer
ID to its multiaddress. SE.Enc(k, x) refers to the (robust)
symmetric encryption of x with the key k. For example,
this can be instantiated with AES-AEZ [28]. We refer to
the homomorphic encryption (HE) of x as HE.Enc(x). Let
KDF denote a key derivation function, which takes as input
some key material and outputs an appropriate cryptographic
key. Implicitly, the KDF outputs a key of the desired length
(in our case, the length of key required for the scheme SE).

6.1. IPFS Provider Advertisements

A provider advertisement maps a CID c to the peer ID
p of a peer that provides c, namely a provider peer. Each
peer maintains a key-value store of provider advertisements,
known as a provider store. When a provider peer stores
a content block addressed by c, it advertises the block to
the IPFS network. The provider peer contacts its k-closest
neighbours to c, following the aforementioned iterative rout-
ing process. (A routing query for a CID operates similarly
to that for a peer ID, in that both identifiers get hashed to
the SHA-256 virtual address space of the Kademlia DHT,

as observed in Section 5.1.) The provider peer then requests
each neighbour to add a provider advertisement for this CID
to their provider store.

Consider a client who wishes to discover the provider
peers for c. The client first runs a routing query for that
CID. This routing query will ultimately lead the client to
one of the k-closest peers to c. We note that our private peer
routing algorithm from Section 5.3 can be used to determine
k-closest peers to the desired CID, without revealing the
CID to the server peer. As described above, these peers will
store the provider advertisement, which would map CID c
to the provider peer p. So, along with the routing query for
c, the client must also query these peers’ provider store for
c. We refer to this as a provider advertisement query.

A server peer processes a provider advertisement query
non-privately as follows. The provider advertisement data-
store is keyed by the CID concatenated with the provider
peer’s ID, since a block with a given CID can be provided
by multiple peers. Each value in the provider store is the
expiry time of the advertisement. Upon receiving a provider
advertisement query, a server peer looks up the provider
store for keys prefixed by the given CID. It checks if each
such provider advertisement has not expired, based on the
value, and if so, extracts the provider peer’s ID from the key
suffix. Recall that the server peer also maintains an address
book, which maps peer IDs to their multiaddresses. The
server peer then consults its address book for the provider
peers’ IDs and fetches their multiaddresses. We observe that
the client’s desired CID continues to leak to the server in
the provider advertisement query, since the server looks up
its provider advertisement store based on this CID.

6.2. Private Algorithm Integration

We present our algorithm for private provider advertise-
ment queries in Algorithm 2. This enables a client to send a
PIR query hiding the CID that it is querying for. The server
returns a PIR response with the peer IDs of corresponding
providers, if they exist in the server’s provider store.
Joining provider store to address book. Similar to the
non-private peer routing query, the non-private provider
advertisement query uses the provider peers’ IDs from the
provider store as a key to the address book which contains
multiaddresses. We join the two key-value stores such that
for a given key (CID), the value contains the provider peer’s
multiaddresses (Line 8–Line 11). We recompute the join
whenever a provider or peer record is inserted. Provider
advertisements have a short default expiry period (of 24
hours), and are typically reinserted after expiration.
Binning for PIR. Given that we now have a joined key-
value store, we could directly apply a KeywordPIR scheme,
wherein the desired CID acts as the keyword that the server
can privately lookup. Instead, to avoid costs of KeywordPIR
schemes, we transform our joined key-value store to one
which enables an IndexPIR scheme, which is more efficient.
This follows the approach described in Section 2.2, with
optimizations. We exploit the fact that the CIDs can be used
to directly map each key-value pair from the joined key

4444

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

value store to a hash table. CIDs in IPFS are computed
using SHA-256, so we can treat them as indices of a hash
table. All key-value pairs whose CIDs have the same ℓ-bit
prefix are grouped into a single row of the table.

We refer to this process as binning, and it enables
multiple pairs to be binned into the same row of the table.
The bins would fill up non-uniformly as more provider
advertisements are added. So the server pads incomplete
bins to the size of the largest bin. This provides a hash table
with B consistently-sized bins over which we can perform
PIR. While the server could vary the number of bins with the
number of provider advertisements that it stores, this would
require the client to know the number of bins in advance
to formulate its query. Instead, we fix B beforehand, based
on the parameterization of the chosen PIR scheme, as we
describe later. To retrieve a provider advertisement for a
given CID, c, the client uses its log2 B-bit prefix as their
desired index in the hash table (Line 2). It then constructs
its PIR query based on this index (Line 3). The performance
of the PIR protocol is relative to the size of the bins.

Encrypted Entries. Immediately applying PIR to the
binned table may enable a client to learn more than it
asked for, since any row in the table contains multiple
provider advertisements. To prevent this leakage, all ad-
vertisements are encrypted under a key derived from the
corresponding CID. Effectively, the CID acts as a pre-shared
secret between a client who desires the provider peers for
that CID and a server who stores them. The server uses a
Key Derivation Function (KDF) to compute a key for each
CID c in the joined store (Line 13). The server encrypts
the multiaddresses for each CID under this key, using a
robust symmetric encryption scheme (Line 14). None of the
preceding steps require the client’s PIR query, and thus, the
table T of binned, encrypted provider advertisements can be
precomputed in advance. The server then computes a PIR
response over this table (Line 15).

After a client receives and decrypts the homomorphically
encrypted PIR response, they obtain a set of ciphertext
provider advertisements, which are symmetrically encrypted
under keys derived from CIDs. The client can derive the
key from their desired CID, k = KDF(c), and use it to
decrypt each ciphertext. Under a robust encryption scheme,
only the ciphertext encrypted with the key derived from c
will decrypt to a valid plaintext. This provides security of a
symmetric PIR scheme. In a trivial symmetric PIR scheme,
the server would send back T to the client (Line 14). We
discuss optimal PIR schemes for this use case in Section 8.

Security. The security of the chosen PIR protocol ensures
that server does not learn the queried CIDs. Meanwhile, the
client only receives a set of encrypted provider advertise-
ments. The symmetric property of our protocol requires that
the client only learns provider advertisements for the CID
that they queried for, and learns nothing about other provider
advertisements stored by the server. In our protocol, this
reduces to the security of the robust symmetric encryption
scheme and the KDF. We defer the proof to Section C.

Algorithm 2 Private Provider Advertisements using PIR
with B bins over a list of provider records P

1: procedure PRIVATEPROVADQUERY(CID c)
2: qu← c[: log2 B] ▷ q ∈ {0, 1, · · · , B − 1}
3: (sk, (pk,ct))← PIR.QUERY(qu)
4: Send (pk,ct) to the server.

5: procedure PRIVATEPROVADRESP((pk,ct), P)
6: Initialize tables: J with ∥P∥ rows, T with B bins.
7: for i ∈ {1, 2, · · · , |P |} do
8: (c, {p1, p2 · · · pj})← P [i]
9: m← c

10: for k ∈ {1, 2, · · · , j} do
11: m← m ∥ M [pk] ▷ Addresses for providers of c.
12: b← c[: log2 B] ▷ Bin index.
13: k ← KDF(c) ▷ Derive a key using the CID.
14: T [b]← T [b] ∪ SE.Enc(k,m) ▷ Encrypt addresses.
15: ans← PIR.RESPONSE((pk,ct), T)

7. Private Content Retrieval

IPFS employs the Bitswap [18] content retrieval proto-
col, which, as in the provider routing protocol, leaks the
CID retrieved to the server. We describe two steps of the
Bitswap protocol (WANTHAVE and BLOCK) and introduce
private equivalents.

7.1. Bitswap Protocol

The WANTHAVE Step. The client concurrently sends a
message to multiple candidate peers, asking if they possess
a block with a given CID. If the peer has the requested CID
in its table, it responds with a Have message. Otherwise, it
may respond with a DontHave message.Importantly, IPFS
clients can use the WANTHAVE step to first query long-
lived peers in its RT, thereby assessing whether they have a
content block, before searching for provider advertisements
for that block. So, the set of candidate peers corresponds
to either a set of peers in the clients’ RT that are queried
opportunistically, or a set of peers that are output from
provider advertisement queries.
The BLOCK Step. In this step, the client asks a peer, who
has responded with Have in the previous step, to transfer
the desired block. There may not be a clear separation
between these two steps, depending on the block size used
in the chunking algorithm [49]. For example, a server peer
can immediately send a small block along with the Have
response, thereby avoiding an extra round of interaction.

7.2. The Private Bitswap Protocol

While developing a private version of Bitswap, we could
develop a single-round protocol; however, we observe that
the client would incur multiplicative communication over-
head when it attempts to opportunistically query multiple
peers who may have the desired content block. So, we
choose to maintain the structure of a two-round protocol,

4445

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

with a lightweight PRIVATEWANTHAVE step and a rel-
atively heavyweight PRIVATEBLOCK step. The PRIVATE-
WANTHAVE step can be run opportunistically with multiple
candidate peers to determine whether a peer has a content
block, while hiding the CID. We provide additional infor-
mation in this step to reduce the overhead of the PRIVATE-
BLOCK step. While Private Set Intersection (PSI) schemes
can be used in the first step, as in [16], they tend to be
relatively communication intensive. In the PRIVATEBLOCK
step, the client privately retrieves the block from the server
peer using PIR. For the remainder of this section, recall the
notation introduced in Section 6.
PRIVATEWANTHAVE. In this step, the client should learn
whether the server has a block with a given CID, and if so,
at which index of the server’s table does this block lie. A
trivial approach would have the server send the entire list
of CIDs to the client, allowing the client to search the list
for the index of the desired CID. This would reveal to the
client other CIDs that are stored by the server peer. This
leakage can be resolved by the server computing the hash
of every entry in the list using a public hash function. Then,
when the client receives the list of all (hashed) CIDs, they
can compute the hash of the CID they desire to determine
its index. Assuming the hash function is one-way, the client
does not learn which other CIDs are stored by the server.

Alternatively, we can reuse the process for provider
advertisements to transmit information to the client. In
particular, for the PRIVATEWANTHAVE step, the client
and server can engage in Algorithm 2, using the list of
CIDs L in place of the joined provider store J . Instead
of encrypting the provider peers’ multiaddresses, we en-
crypt the index of the CID, and thus Line 14 changes to
T [b]← T [b] ∪ SE.Enc(k, i).

In the PRIVATEWANTHAVE step, the server also returns
the optimal PIR protocol to use in the PRIVATEBLOCK step,
depending on the number of blocks they hold, enabling an
adaptive approach to efficiently retrieve a block. Optimal
choices of PIR schemes for the PRIVATEWANTHAVE step
are the same as those for the private provider advertisement
functionality (Section 6.2), and are discussed in Section 8.
The security of PRIVATEWANTHAVE is then equivalent to
the security of the private provider advertisement algorithm.
PRIVATEBLOCK. Following the PRIVATEWANTHAVE
step, the client knows the index of the desired block in the
table held by the server. Thus, it can issue an IndexPIR query
to retrieve the block. The optimal choice of PIR protocol
for this step depends on the number of blocks possessed
by the peer. The optimal PIR protocol is sent to the client
as part of the PRIVATEWANTHAVE response, enabling the
client to follow that protocol to construct a PIR query for
the PRIVATEBLOCK step.

Directly applying PIR to the table of content blocks is
undesirable as it leaves the server peer vulnerable to an index
enumeration attack. A client could query for an arbitrary
index and retrieve a block of content without knowing its
corresponding CID. Thus, we require some cryptographic
pre-processing of the data. We reapply a technique that we
have previously identified: using the CID as a pre-shared

secret between clients and servers. Each block in the table is
encrypted under a key derived from the corresponding CID,
so that a client receiving a PIR response can only retrieve
a content block if they know its CID. We summarize how
the server handles a client’s PIR query in Algorithm 3.

The server only obtains a PIR query from the client,
and thus it can only break the security of PRIVATEBLOCK
if it can break the underlying PIR scheme. On the part of
the client, the security argument is equivalent to that for the
private provider advertisements algorithm.

Algorithm 3 PRIVATEBLOCK using PIR
1: procedure PRIVATEBLOCKRESPONSE(qu, D)
2: for j ∈ {1, 2, · · · ,m} do
3: k ← KDF(L[j]) ▷ L[j] is the CID.
4: D[j]← SE.Enc(k,D[j])
5: return PIR.RESPONSE(qu, D)

8. Analysis of PIR Protocols

In this section, we analyze options for PIR protocols to
be used in our algorithms from Sections 5–7. Our goal is to
select schemes with the best communication–computation
cost tradeoff for each of the following use cases:

1) Few rows with small payloads: PIR over a table of 256
rows with roughly 1.5KB entries for private routing.

2) Bins with varying size: PIR over bins for provider
advertisements and PRIVATEWANTHAVE steps.

3) Many rows with large payloads: PIR over 256KB pay-
loads, representing content blocks in PRIVATEBLOCK.

We require that the protocol maintain the same number
of rounds as the non-private protocols, to adhere to the same
structure. Hence, the protocol chosen for each case should
only require a single round. Additionally, the PIR protocol
should be efficient even if a client issues only one PIR query
to a specific server, which is the case for our applications.
Thus, we cannot amortize costs over many queries.

We examine existing PIR protocols in Section 8.1. While
these protocols are reasonable for our PRIVATEBLOCK step,
applying any of them to the prior two use cases leads to
infeasible costs. To sufficiently address our use cases, we
propose two PIR protocols: PAILLIERPIR and RLWEPIR,
in Section 8.2. Both are tailored for the IPFS setting but
may be of independent interest in other systems with similar
architectures. We evaluate the costs of our proposed and
existing PIR schemes for each use case in Section 8.3.

8.1. Existing PIR Protocols

Modern PIR protocols typically consist of offline and
online phases. In the offline phase, content that is indepen-
dent of the query is exchanged (e.g., cryptographic keys and
database-dependent hints) to accelerate the online phase. In
the online phase, the server computes a response to a query.
To adhere to having only one round of communication, we
require that any offline phase which requires interaction with
the client is conducted concurrently with the online phase.

4446

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Lower bounds on the size of the key material,
query, and response of various protocols. The second col-
umn denotes the size of client-specific cryptographic keys
used in each approach. *In HintlessPIR and YPIR, the bound
depends on the database size (1 GB here).

Protocol
Key Query Response

Material (Encrypted) (Plaintext) (Encrypted)

SealPIR [5] 1.6 MB 90 KB 10 KB 181 KB
FastPIR [2] 0.67 MB 64 KB 10 KB 65 KB

OnionPIR [45] 5.4 MB 64 KB 30 KB 128 KB
Spiral [41] 13 MB 28 KB 7.5 KB 20 KB

HintlessPIR∗ [33] - 453 KB 32 KB 3080 KB
YPIR∗ [42] 462 KB 384 KB 1 B 12 KB

PAILLIERPIR 1.14 KB 0.38 KB 0.38 KB 0.76 KB
RLWEPIR 750 KB 64 KB 7.5 KB 65 KB

RLWEPIR3 192 KB 64 KB 7.5 KB 65 KB
RLWEPIR2 128 KB 64 KB 7.5 KB 65 KB

This precludes many PIR protocols for our use cases, as
discussed in the full version [40].

We observe that PIR protocols that use client-specific
cryptographic keys are the only suitable candidates (we
elaborate on this in the full version). This leaves SealPIR [5],
FastPIR [2], OnionPIR [45], Spiral [41], HintlessPIR [33],
and YPIR [42]. Table 1 summarizes the high level costs
of each of these protocols. Spiral provides small queries
and responses, but requires the client to send a large,
13MB cryptographic key. In contrast, SealPIR, FastPIR, and
OnionPIR involve smaller cryptographic keys but require
larger queries and/or responses. HintlessPIR requires no
client-specific keys, but has very large response sizes. YPIR
requires very small keys, but is optimized for payloads
smaller than our cases. Importantly, we deemed all existing
schemes to be insufficient for our first and second use
cases, due to incompatible payload sizes. Our PAILLIERPIR
scheme supports smaller payloads, which is relevant for peer
routing. Variants of RLWEPIR produce the smallest client-
specific cryptographic keys, in comparison to the aforemen-
tioned schemes, which is useful for the private provider
advertisements and PRIVATEWANTHAVE steps. We consider
existing PIR schemes that support 256 KB payloads, for the
PRIVATEBLOCK step and evaluate them in Section 8.3.

8.2. Tailored Protocols: PAILLIERPIR, RLWEPIR

We present protocols based on Paillier or RLWE encryp-
tion in Algorithm 4; these protocols use existing techniques
from cryptographic folklore. Both protocols compute an in-
ner product between an encrypted indicator vector, supplied
by the client, and a table. The protocols are straightforward
in nature, which both allows for ease of integration into
large systems and demonstrates the lack of attention paid to
such use cases in the PIR literature.
PAILLIERPIR. This protocol is based on the Paillier cryp-
tosystem and uses homomorphic additions (PAILLIER.Add)
and scalar multiplications (PAILLIER.ScalMult). The client
only sends a small public key (1 KB) to the server along with
the PIR query; this key includes the Paillier composite mod-
ulus and the chosen generator. For the PIR query, the client

Algorithm 4 PAILLIERPIR and RLWEPIR. The composite
modulus of Paillier is denoted as M . The plaintext and
ciphertext space of RLWE are denoted as Rp and C, re-
spectively. db represents a database with n rows and ℓ
columns. We assume the size of each cell in the database is
the size of one plaintext in the corresponding scheme, i.e., in
PAILLIERPIR, db ∈ Zn×ℓ

M and in RLWEPIR, db ∈ Rn×ℓ
p .

1: procedure PAILLIERPIR.Query(i) ▷ i ∈ {1, · · · , n}
2: Sample Paillier secret key sk
3: ct $←− Zn

M2

4: for j ∈ {1, . . . , n} do
5: bj ← I[i = j]
6: rj ← PAILLIER.Dec(sk,ct[j]) ▷ rj ∈ ZM

7: p[j] = bj − rj mod M ▷ p ∈ Zn
M

8: return (sk, (ct,p))

9: procedure PAILLIERPIR.Response((ct,p), db)
10: for j ∈ {1, . . . , n} do
11: ct′[j]← PAILLIER.Add(ct[j],p[j])
12: ans← [0] ∗ ℓ
13: for k ∈ {1, . . . , ℓ} do
14: ans[k]← PAILLIER.ScalMult(ct′[1],db[1][k])
15: for j ∈ {2, . . . , n} do
16: t← PAILLIER.ScalMult(ct′[j],db[j][k])
17: ans[k]← PAILLIER.Add(ans[k], t)
18: return ans

19: procedure RLWEPIR.Query(i) ▷ i ∈ {1, · · · , n}
20: sk,pk← GenerateKeys()
21: for j ∈ {1, 2..⌈n/N⌉} do
22: if j ∗N ≤ i < (j + 1) ∗N then
23: ct[j]← RLWE.Enc(sk, Xi mod N)
24: else
25: ct[j]← RLWE.Enc(sk, 0)
26: return (sk, (pk,ct))

27: procedure RLWEPIR.Response((pk, ct), db)
28: C ← []
29: for j ∈ {1, 2..⌈n/N⌉} do
30: t← ObliviousExpand(pk,ct[j]) ▷ t ∈ CN
31: Append ciphertexts in t to C
32: ans← [0] ∗ ℓ
33: for k ∈ {1, · · · , ℓ} do
34: ans[k]← RLWE.ScalMult(C[1],db[1][k])
35: for j ∈ {2, . . . , n} do
36: t← RLWE.ScalMult(C[j],db[j][k])
37: ans[k]← RLWE.Add(ans[k], t)
38: return ans

encrypts an indicator vector corresponding to the desired
row, which produces one ciphertext for each row in the table.
To reduce the query size, we use a technique from Beck [8].
Instead of directly sending the indicator ciphertext vector,
the client samples a random ciphertext vector (Line 3).
It decrypts this ciphertext vector to obtain a randomized
plaintext vector (Line 6), uses this plaintext vector to mask
each element of the indicator vector (Line 7), and sends the
masked plaintext vector to the server. Instead of sending the
randomized ciphertext vector (Line 3), the client sends a
seed used to generate this vector. The communication cost
for one query is approximately halved, as given by the sum
of sizes of the seed and a vector of plaintexts.

4447

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

The server provides a PIR response to the client’s query
(Line 9). In doing so, it runs a scalar multiplication for each
element in the database (Lines 14, 16). The computation
overhead is thus proportional to the size of the database,
making it impractical for large databases. Nonetheless, this
protocol is useful for databases with few, small rows. Proofs
of correctness and security for PAILLIERPIR are provided
in Section B. In our evaluation, we choose a 3072-bit
composite modulus M for 128-bit security [7], [24].
RLWEPIR. Our second construction is based on
RLWE [36] and related additive homomorphic schemes [10],
[11], [20]. Plaintexts are polynomials p(x) ∈ Rp =
Zp/(X

N + 1). We make use of homomorphic addition
(RLWE.Add) and scalar multiplication (RLWE.ScalMult).
Our construction combines common techniques in the liter-
ature for RLWE-based PIR protocols [2], [5], [17], tuned
to our setting. Compared to PAILLIERPIR, RLWEPIR
has lower computation but higher communication costs. A
client requesting row i generates the plaintext polynomial
p(X) = Xi, and sends the encryption of this polynomial
to the server as the PIR query. The server then derives an
encrypted indicator vector from the query using an oblivious
expansion technique [5], [13], [17].

Oblivious expansion occurs as follows: on an input
ciphertext c which encrypts p(X) = a0 + a1X + · · · +
aN−1X

N−1, it outputs N ciphertexts, {ci}i=0,··· ,N−1 such
that ci encrypts the scalar ai. An automorphism key, for a
given k ∈ Z∗

2N allows the server to compute the encryption
of p(Xk) from the encryption of p(X). Angel et al. [5]
first proposed an oblivious expansion scheme requiring a
client to send log2 N automorphism keys to the server [5],
[13]. More recently, de Castro et al. [17] propose a change
that requires only a constant number of automorphism keys.
While this reduces the communication cost, the server must
perform more automorphisms, thereby increasing the com-
putation cost. Server-side oblivious expansion is denoted
by ObliviousExpand in Line 30 and the client-side proce-
dure to generate the necessary secret and auxiliary keys is
GenerateKeys in Line 20.

In addition to RLWEPIR, we develop two variants of
oblivious expansion following de Castro et al. [17]. RL-
WEPIR2 and RLWEPIR3 involve two and three automor-
phism keys, respectively. RLWEPIR sends more keys; we
detail these variants and their application to the first and
second use cases in Section D. In all variants of RLWEPIR,
we use a polynomial modulus degree of N = 4096 and a
plaintext modulus of 40961. The ciphertext modulus is the
composite of 54-bit and 55-bit primes. These parameters
ensure correctness and provide 128-bit security. The security
of our protocol follows directly from prior work [5], [17].
Generating fewer automorphism keys increases the number
of operations that the server performs, but does not affect
the security of the protocol.

8.3. Evaluation

Experimental Setup. We evaluate the total communication
cost and the server-side runtime for our three use cases,

while increasing the size of the table for each use case.
We perform our peer and provider routing experiments on
an AMD Ryzen 9 7900X with 12 cores and 32 GB RAM,
whereas our content retrieval experiment is run on an AMD
EPYC 7302 with 16 cores and 6 TB RAM. Thus, for all
three use cases, the entire table is stored in memory. We
plot averages and standard deviations for both overheads
over N = 10 runs, in Figure 2.

The Runtime metric denotes the server-side runtime to
process a single private query in each use case. We se-
lectively parallelize our bottlenecks for peer and provider
routing to minimize runtimes. Client-side runtime is typi-
cally small in comparison to the server-side runtime. The
Communication metric denotes the total round-trip network
cost of one private query. For peer routing, we evaluate these
overheads only for a single “hop” in the iterative routing
process; in a complete lookup, the client would query server
peers in multiple hops to reach a target peer. We then analyze
the end-to-end latency for a complete lookup.
Private Peer Routing. We recall this case from Section 5.3,
wherein we query a routing table of up to 256 rows with
1.5 KB entries. The number of rows in the routing table
is bound by the bit length of peer addresses in IPFS.
First, in order of increasing communication cost, we find
PAILLIERPIR followed by RLWEPIR2, RLWEPIR3, and
RLWEPIR. Increasing the number of automorphism keys
sent increases the communication cost across the latter
three schemes, as expected. Second, each of our new PIR
algorithms has a constant communication overhead, even as
the number of rows increases. This is because the client
issues its query assuming the worst case scenario, namely
that the server’s RT has 256 buckets. Third, we also plot the
communication overhead when the server sends the entire
normalized RT, in the TRIVIALPIR plot, and observe that
PAILLIERPIR outperforms TRIVIALPIR as long as the nor-
malized RT has more than approximately 64 rows. However,
TRIVIALPIR may increase the risk of eclipse attacks, and
is thus unsuitable for our threat model. Finally, we find
that RLWEPIR has the smallest server runtime, followed
by RLWEPIR3, RLWEPIR2, and PAILLIERPIR. Our RL-
WEPIR3 and RLWEPIR2 schemes are bottlenecked by
the oblivious expansion step; decreasing the number of
automorphism keys requires the server to perform additional
automorphisms, which increases the server runtime. Our
PAILLIERPIR scheme scales poorly with increasing number
of rows, as expected. We recommend RLWEPIR3 for this
use case, as it provides the best communication–computation
tradeoff for our goal.
Private Provider Advertisement. We evaluate PIR pro-
tocols for private provider advertisements (Section 6); our
results can be extended to the PRIVATEWANTHAVE step
(Section 7). We group multiple provider advertisements into
bins and perform PIR over bins. We use 4096 bins for our
RLWE-based protocols, since the client can encode a query
as large as the polynomial modulus degree N = 4096 within
one RLWE ciphertext with no extra cost. We use 256 bins
for PAILLIERPIR. These bins store increasing numbers of
provider advertisements, varying from 8 k–192 k. We conser-

4448

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

16 32 64 128 256
10

100

1,000

C
om

m
un

ic
at

io
n

(K
B

)

8k 40k 80k 120k160k200k
0

0.5

1

C
om

m
un

ic
at

io
n

(M
B

)

103 104 105 106

5

10

15

C
om

m
un

ic
at

io
n

(M
B

)

16 32 64 128 256

0.1

1

Number of rows in normalized RT

R
un

tim
e

(s
)

8k 40k 80k 120k160k200k
0.5

1

1.5

Number of provider advertisements
R

un
tim

e
(s

)

103 104 105 106

1

100
10

1,000

Number of content blocks

R
un

tim
e

(s
)

PAILLIERPIR RLWEPIR2 RLWEPIR3 RLWEPIR SealPIR
FastPIR OnionPIR Spiral TRIVIALPIR TRIVIALSPIR

Figure 2: Communication costs (top graphs) and computation costs (bottom graphs) for private peer routing (left graphs),
private provider advertisements (middle graphs), and private content retrieval (right graphs).

vatively overestimate the size of each provider advertisement
to 100 B. Thus, our provider advertisement store is between
800 kB–18.75 GB.

First, as expected, our RLWEPIR2, RLWEPIR3 and
RLWEPIR schemes have relatively increasing communi-
cation costs and decreasing server runtimes, similar to the
peer routing use case. Second, the communication costs and
runtimes of our RLWE schemes are in the form of a step
function over the number of provider advertisements; these
overheads increase sharply at approximately 40k and 140k
advertisements. As bins fill with more provider advertise-
ments, the server needs to compute additional ciphertexts
to encode a bin in a PIR response, resulting in the sharp
increases in both overheads. Third, the communication cost
of PAILLIERPIR is lower than that of RLWEPIR, as ex-
pected. The number of rows (bins) for PAILLIERPIR, and
thus the size of the PIR query, is identical to the peer
routing case. As we increase the size of each row, the
size of the PIR query remains constant, whereas the size
of the PIR response increases linearly, and thus the total
communication cost increases linearly. PAILLIERPIR is an
order of magnitude slower than RLWEPIR, taking between
0.5–6 minutes, which is consistent with existing results [3],
[34]. Thus, we do not plot its runtime in Figure 2, and do not
recommend it for this use case. Fourth, we consider a trivial
symmetric PIR approach, namely TRIVIALSPIR (defined in
Section 6.2); this protocol quickly exceeds the communica-
tion costs of our RLWEPIR and PAILLIERPIR protocols.
In conclusion, comparing the variants of RLWEPIR, we
again recommend using RLWEPIR3.
Private Content Retrieval. Finally, we consider overheads
for content blocks sent in the PRIVATEBLOCK step. We vary
the number of content blocks stored by the server peer from
103 to 106, resulting in a content store size of 256 MB–

256 GB. In the PRIVATEWANTHAVE step, the server will
output the PIR protocol to use for the PRIVATEBLOCK step.
So, we recommend multiple protocols for this use case, de-
pending on the size of the content store. PAILLIERPIR and
RLWEPIR have been designed for the two aforementioned
use cases and provide a poor communication–computation
tradeoff for this case. Thus, excluding them, we compare
the remaining options from Table 1.

We observe the following from Figure 2. Spiral en-
ables reasonably low runtimes (between 0.4–20 s) for the
ranges of database sizes that we consider, while incurring
a high communication overhead. SealPIR has almost half
as much communication overhead as Spiral, and is at least
an order of magnitude slower. At the other extreme of the
communication–computation tradeoff, FastPIR has the low-
est communication overhead until 100,000 blocks, and this
overhead then scales linearly for larger databases. FastPIR is
noticeably slower than other protocols until 10,000 blocks.

We thus recommend Spiral for the PRIVATEBLOCK
step in Bitswap, due to its significantly lower computa-
tion overhead. Alternately, to reduce communication costs,
lightweight peers that hold less than 10,000 blocks may opt
for FastPIR, whereas heavyweight peers can opt for SealPIR.

While all tables were stored in memory for our exper-
iments, machines with smaller RAM sizes may frequently
read the disk for large content stores and provider adver-
tisement stores. We can vertically partition the table, cache
each partition or column, and use each column only once to
compute the PIR response (Line 33–Line 37, Algorithm 4).
End-to-end latency analysis. A client retrieves a content
block with a CID c in three steps. First, the client oppor-
tunistically searches for the content block, by running the
PRIVATEWANTHAVE step in parallel among its neighbours,
and thus the total computational latency for this step would

4449

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

be the same as that in Figure 2. The client does not usually
find the block in the first step; they then learn the block’s
provider peer’s ID p, by running a peer routing query
for peers closest to Hash(c) and simultaneously, running a
provider routing query for providers for c. Third, the client
finds the provider’s multiaddress, by running another peer
routing query for peers closest to p.

For peer routing, each hop, which takes the client one
bit closer to the target peer ID, is sequential. Thus, the total
server-side computational latency for private peer routing
would be the path length multiplied by the latency for one
hop (≈ 60 ms from Figure 2). The client’s overheads to com-
pute the PIR query and process the PIR response for each
hop would also similarly scale with the path length. Our path
length does not increase over standard IPFS in practice (Sec-
tion 5.2). For the IPFS network of size n = 200, 000 [58],
the average path length in Kademlia is log2(n) = 17.6 [38],
and so, the total server-side computational latency of a
private peer routing query would be ≈ 1 s. The client would
experience this latency when running a peer routing query
to learn the multiaddress of a provider peer.

From Figure 2, provider routing takes longer (t2 ≈
600–900 ms) than peer routing (t1 ≈ 60 ms). Thus, in the
aforementioned second step, when the client runs both
peer and provider routing queries in parallel, they will
potentially know a provider peer ID p at the end of a
single hop of a peer routing query (t1). However, they will
not know that peer p is in fact a provider, until they get
the provider routing response (t2). Instead of waiting (≈
540–840 ms) for a provider routing response for each hop,
the client can proceed with the next hop of the private
peer and provider routing queries. This design decision
avoids bottle-necking the computational latency for each
hop to the latency of the slower query, namely the private
provider routing query, at the cost of redundantly querying
other peers in case the client would have found a provider
in a previous hop. The end-to-end latency includes both
the total computational latency as well as the network
round-trip time (RTT) for each hop, which we represent
by τi. The worst case end-to-end latency O(T) to find a
provider peer ID is:

O(T) = log2(n) · t1︸ ︷︷ ︸
Peer routing

+Σ
log2(n)
i=1 τi︸ ︷︷ ︸

Network RTT

+max(τi) + t2︸ ︷︷ ︸
Provider routing

For content retrieval, each file is decomposed into a
Merkle DAG of content blocks (Section 2.1, [26], [49]).
The height of this DAG is logarithmic in the file size, and
it bounds the number of sequential retrievals for which our
private content retrieval algorithm’s latency may cascade.
All blocks within the same level of the tree can be fetched
in parallel from the same or different provider servers. We
consider two types of churn in the network: node churn
(when a peer enters or leaves the network) and content churn
(when a content block is added or removed by its provider).
In the full version, we outline how these types of churn
impact each of our algorithms.

Use Case Recommendation Communication Runtime

Peer Routing RLWEPIR3 295 KB 60 ms

Provider RLWEPIR3 430 KB <1 sAdvertisements

Spiral 10–15 MB 0.5–15s
Content Retrieval FastPIR 1.7–2.1 MB 25–38s

SealPIR 6.1–6.4 MB 200–2250s

TABLE 2: Recommended PIR Protocols. Measurements for
FastPIR and SealPIR are for 103–104 and 105–106 blocks,
respectively.

9. Discussion & Takeaways

We summarize our recommended PIR protocols for each
use case in Table 2. While we do incur an overhead, our
private algorithms for each use case are agnostic of the
ingredient protocol. Hence, improved PIR protocols in future
work can be plugged into our algorithms.

Based on our design of PIR protocols for the distributed
setting, we present the following takeaways.
• Symmetric PIR: Robust symmetric encryption can be used

to instantiate a symmetric PIR scheme, by interpreting the
index of the record to fetch, which is the CID in our case,
as a pre-shared secret between the client and server.

• IndexPIR: Given that CIDs are themselves hashes, we con-
struct an IndexPIR scheme, where the client can compute
the bin index by taking a prefix of the CID. Consequently,
an extra round to privately fetch the index is unnecessary.

• RLWE: Reducing the number of automorphism keys sent
by the client, by extending existing oblivious expansion
techniques, allows us to gain runtimes comparable to
RLWEPIR with much lower communication overhead.

Non-collusion Assumptions in DHTs. Distributed set-
tings are often seen as ideal applications of non-collusion
assumptions, which can enable more efficient algorithms.
For example, Mazmudar et al. [39] leverage IT-PIR for
content retrieval in DHTPIR. They observed that existing
work in robust DHTs [60] relied on the ability to partition
peers into quorums: groups of peers such that each group
has a bounded proportion of malicious peers. They exploit
quorums to satisfy non-collusion assumptions for IT-PIR.

However, we found that instantiating these assumptions
in IPFS was challenging since robust DHTs relied on theo-
retical quorum formation protocols. Mazmudar et al. [39]
suggest forming quorums using the Commensal Cuckoo
Rule (CCR) [54]. CCR requires peers to repeatedly leave
and join the network until they join a sufficiently big
quorum, and thereby, drastically increases the node churn.
Even if one were able to efficiently instantiate quorums,
applying IT-PIR still appears infeasible, since it requires
all peers within a quorum to share files. In IPFS, peers
decide which files to store, whereas IT-PIR requires them
to increase storage by a factor of the size of a quorum. This
introduces a prohibitive overhead of copying files every time
a peer changes quorums. Thus, despite appearing to be a
natural setting for threshold cryptography, we conclude that
the assumptions required in prior work do not hold for IPFS.

4450

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

Privacy Engineering Takeaways. We outline key take-
aways on integrating PETs into an existing non-private
codebase for a distributed system.
• We use existing integration tests, along with observability

tools such as distributed tracing [46], [48], to easily track
how private information is used within existing functions
in the codebase, and to determine which functions need to
be reimplemented privately.

• Backwards compatibility enables gradual deployment of
private implementations as more peers update their code.
Instead of altering existing functionality, we add private
versions through careful integration with Protobufs [25].
We could then test both private and non-private versions
simultaneously for correctness. We highlight that PETs
for DHTs should not only be backwards compatible at a
protocol level, but should also handle data that is already
published in the DHT.

• We design our private interfaces to be sufficiently generic
so that we can instantiate different PET implementations,
such as PAILLIERPIR and RLWEPIR, under them.

• Data structures in the codebase often differ from the model
used in PETs. We join multiple tables in order to perform
PIR. This is distinct from any preprocessing operations
that the PET itself requires.

• Dealing with randomization: For peer and provider rout-
ing, the client sends the same message to each server
in its path to the target. However, our private versions
involve the client sending a different ciphertext message,
namely a PIR query, to each server peer. This discrepancy
may arise in both centralized (client-server) or distributed
(P2P) architectures, and for other PETs such as differential
privacy, and addressing it may require significant redesign
to avoid code smell.

Acknowledgements

This research has been funded by the RFP-014: Private
retrieval of data grant from Protocol Labs (PL) [31], [53].
We are grateful to Will Scott from PL for his support
throughout this project. We thank Dennis Trautwein and
Guillaume Michel from PL for their assistance in integrating
Peer2PIR algorithms within the LibP2P library. We also
thank our anonymous shepherd for their helpful feedback.
This work benefited from the use of the CrySP RIPPLE
Facility at the University of Waterloo. Any findings or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of PL.

References

[1] Ishtiyaque Ahmad, Divyakant Agrawal, Amr El Abbadi, and Trinabh
Gupta. Pantheon: Private retrieval from public key-value store. Proc.
VLDB Endow., 16(4):643–656, 2022.

[2] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Ab-
badi, and Trinabh Gupta. Addra: Metadata-private voice communica-
tion over fully untrusted infrastructure. In 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21), pages
313–329. USENIX Association, July 2021.

[3] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova,
Phillipp Schoppmann, Karn Seth, and Kevin Yeo. Communica-
tion–Computation Trade-offs in PIR. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1811–1828, 2021.

[4] Andris Ambainis. Upper Bound on the Communication Complexity
of Private Information Retrieval. In Pierpaolo Degano, Roberto Gorri-
eri, and Alberto Marchetti-Spaccamela, editors, Automata, Languages
and Programming, ICALP 1997, pages 401–407. Springer, 1997.

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with
compressed queries and amortized query processing. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 962–979, 2018.

[6] Michael Backes, Ian Goldberg, Aniket Kate, and Tomas Toft. Adding
query privacy to robust DHTs. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security,
ASIACCS ’12. Association for Computing Machinery, 2012.

[7] Elaine Barker. Recommendation for key management: Part 1 – gen-
eral. Technical report, National Institute of Standards and Technology,
Gaithersburg, MD, 2020.

[8] Martin Beck. Randomized decryption (RD) mode of operation for
homomorphic cryptography - increasing encryption, communication
and storage efficiency. In 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 220–226,
2015.

[9] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Ray-
mond. Breaking the o(n1/(2k−1)) barrier for information-theoretic
private information retrieval. The 43rd Annual IEEE Symposium on
Foundations of Computer Science, pages 261–270, 2002.

[10] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In Advances in Cryptology –
CRYPTO 2012, volume 7417 of LNCS, pages 868–886, Berlin, Hei-
delberg, 2012. Springer.

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
fully homomorphic encryption without bootstrapping. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, page 309–325, New York, NY, USA, 2012. Association
for Computing Machinery.

[12] Ling Cao and Yue Li. IPFS keyword search based on double-layer
index. In Zhiyuan Zhu and Fengxin Cen, editors, International
Conference on Electronic Information Engineering and Computer
Communication (EIECC 2021), volume 12172, page 1217209. In-
ternational Society for Optics and Photonics, SPIE, 2022.

[13] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM:
Efficient constant bandwidth oblivious RAM from (leveled) TFHE.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 345–360, New York,
NY, USA, 2019. Association for Computing Machinery.

[14] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan.
Private Information Retrieval. In Proceedings of IEEE 36th Annual
Foundations of Computer Science, pages 41–50. IEEE, 1995.

[15] Erik Daniel, Marcel Ebert, and Florian Tschorsch. Improving Bitswap
privacy with forwarding and source obfuscation. In 2023 IEEE 48th
Conference on Local Computer Networks (LCN), pages 1–4. IEEE,
2023.

[16] Erik Daniel and Florian Tschorsch. Privacy-enhanced content dis-
covery for Bitswap. In 2023 IFIP Networking Conference (IFIP
Networking), pages 1–9. IEEE, 2023.

[17] Leo de Castro, Kevin Lewi, and Edward Suh. WhisPIR: Stateless
private information retrieval with low communication. Cryptology
ePrint Archive, 2024/266, 2024. https://eprint.iacr.org/2024/266.

[18] Alfonso De la Rocha, David Dias, and Yiannis Psaras. Accelerating
content routing with Bitswap: A multi-path file transfer protocol in
IPFS and Filecoin. Technical report, Protocol Labs, 2021.

[19] Daniel Demmler, Amir Herzberg, and Thomas Schneider. RAID-
PIR: Practical Multi-Server PIR. In Proceedings of the 6th Edition of
the ACM Workshop on Cloud Computing Security, CCSW ’14, pages
45–56. Association for Computing Machinery, 2014.

4451

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

[20] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully
Homomorphic Encryption. Cryptology ePrint Archive, 2012/144,
2012. https://eprint.iacr.org/2012/144.

[21] Fleek. Deployments on Fleek. https://docs.fleek.co/hosting/site-dep
loyment/. Accessed on 2025-04-07.

[22] Fleek. Space daemon. https://github.com/FleekHQ/space-daemon.
Accessed on 2025-04-07.

[23] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Homomorphic
Encryption with Polylog Overhead. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
volume 7237 of LNCS, pages 465–482, Berlin, Heidelberg, 2012.
Springer-Verlag.

[24] Damien Giry. Cryptographic key length recommendation. https:
//www.keylength.com/en/4/. Accessed on 2025-04-07.

[25] Google. What problems do protocol buffers solve? https://protobuf
.dev/overview/#solve.

[26] Marcel Gregoriadis. Analysis and Comparison of Deduplication
Strategies in IPFS. Master’s thesis, Humboldt-Universität zu Berlin,
2023.

[27] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs,
Sarah Meiklejohn, and Vinod Vaikuntanathan. One Server for the
Price of Two: Simple and Fast Single-Server Private Information
Retrieval. In 32nd USENIX Security Symposium (USENIX Security
23), pages 3889–3905, Anaheim, CA, 2023. USENIX Association.

[28] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust
Authenticated-Encryption AEZ and the Problem That It Solves. In
E. Oswald and M. Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, volume 9056 of LNCS, pages 15–44, Berlin,
Heidelberg, 2015. Springer.

[29] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). RFC
8484 (Proposed Standard), October 2018.

[30] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman.
Specification for DNS over Transport Layer Security (TLS). RFC
7858 (Proposed Standard), May 2016. Updated by RFC 8310.

[31] Karola Kirsanow and Will Scott. Announcing rfp-014: The one with
private retrieval. https://research.protocol.ai/blog/2022/announc
ing-rfp-014-the-one-with-private-retrieval/, 2022. Accessed on
2025-04-07.

[32] Protocol Labs. How IPFS works. https://docs.ipfs.tech/concepts/ho
w-ipfs-works/, 2023. Accessed on 2024-02-04.

[33] Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-
Wu. Hintless Single-Server Private Information Retrieval. In Ad-
vances in Cryptology – CRYPTO 2024, pages 183–217. Springer,
2024.

[34] Helger Lipmaa. An oblivious transfer protocol with log-squared
communication. In Proceedings of the 8th International Conference
on Information Security, ISC’05, page 314–328, Berlin, Heidelberg,
2005. Springer-Verlag.

[35] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Ming-
ming Zhang, Chunying Leng, Ying Liu, Zaifeng Zhang, and Jian-
ping Wu. An end-to-end, large-scale measurement of DNS-over-
Encryption: How far have we come? In Proceedings of the 2019
Internet Measurement Conference (IMC’19), pages 22–35, 2019.

[36] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal
Lattices and Learning with Errors over Rings. In Henri Gilbert, editor,
Advances in Cryptology – EUROCRYPT 2010, volume 6110 of LNCS,
pages 1–23, Berlin, Heidelberg, 2010. Springer.

[37] Rasoul Akhavan Mahdavi and Florian Kerschbaum. Constant-weight
PIR: Single-round Keyword PIR via Constant-weight Equality Oper-
ators. In 31st USENIX Security Symposium (USENIX Security 22),
pages 1723–1740, Boston, MA, 2022. USENIX Association.

[38] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer
information system based on the XOR metric. In Revised Papers from
the First International Workshop on Peer-to-Peer Systems, IPTPS ’01,
pages 53–65, Berlin, Heidelberg, 2002. Springer-Verlag.

[39] Miti Mazmudar, Stan Gurtler, and Ian Goldberg. Do You Feel a
Chill? Using PIR against Chilling Effects for Censorship-resistant
Publishing. In Proceedings of the 20th Workshop on Workshop on
Privacy in the Electronic Society, WPES ’21, page 53–57, New York,
NY, USA, 2021. Association for Computing Machinery.

[40] Miti Mazmudar, Shannon Veitch, and Rasoul Akhavan Mahdavi.
Peer2PIR: Private Queries for IPFS. arXiv:2405.17307 [cs.CR], 2024.
https://arxiv.org/abs/2405.17307.

[41] Samir Jordan Menon and David J. Wu. SPIRAL: Fast, high-rate
single-server PIR via FHE composition. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 930–947, 2022.

[42] Samir Jordan Menon and David J. Wu. YPIR: High-Throughput
Single-Server PIR with Silent Preprocessing. In 33rd USENIX Secu-
rity Symposium (USENIX Security 24), pages 5985–6002, 2024.

[43] Guillaume Michel. Double-hashing as a way to increase reader
privacy. https://www.youtube.com/watch?v=VBlx- VvIZqU.
Accessed on 2025-04-07.

[44] Guillaume Michel. IPIP-373: Double Hash DHT Spec. https://gith
ub.com/ipfs/specs/pull/373. Accessed on 2025-04-07.

[45] Muhammad Haris Mughees, Hao Chen, and Ling Ren. OnionPIR:
Response efficient single-server PIR. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’21, page 2292–2306, New York, NY, USA, 2021. Association
for Computing Machinery.

[46] The OpenTelemetry Authors. What is opentelemetry? https://open
telemetry.io/docs/concepts/what- is-opentelemetry/. Accessed on
2025-04-07.

[47] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, Advances in Cryptology
– EUROCRYPT’99, volume 1592 of LNCS, pages 223–238, Berlin,
Heidelberg, 1999. Springer.

[48] Austin Parker, Daniel Spoonhower, Jonathan Mace, and Rebecca
Isaacs. Distributed Tracing in Practice. O’Reilly Media, Inc., 2020.

[49] Protocol Labs. Chunking. https://docs.ipfs.tech/concepts/file-systems
/#chunking. Accessed on 2025-04-07.

[50] Protocol Labs. Ecosystem directory. https://ecosystem.ipfs.tech/.
Accessed on 2025-04-07.

[51] Protocol Labs. Privacy and Encryption. https://docs.ipfs.tech/conce
pts/privacy-and-encryption/. Accessed on 2025-04-07.

[52] Bernd Prünster, Alexander Marsalek, and Thomas Zefferer. Total
Eclipse of the Heart – Disrupting the InterPlanetary File System.
In 31st USENIX Security Symposium (USENIX Security 22), pages
3735–3752, Boston, MA, August 2022. USENIX Association.

[53] Will Scott. Private retrieval grant 2023 roundup. https://research.p
rotocol.ai/blog/2023/private-retrieval-grant-2023-roundup/, 2023.
Accessed on 2025-04-07.

[54] Siddhartha Sen and Michael J. Freedman. Commensal cuckoo: secure
group partitioning for large-scale services. SIGOPS Oper. Syst. Rev.,
46(1):33–39, 2012.

[55] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’01, pages 149–160, 2001.

[56] Dennis Trautwein. 2022-09-20 Hydras Analysis. https://github.com
/probe-lab/network-measurements/blob/master/results/rfm21-hydra
s-performance-contribution.md#provider-distribution. Accessed on
2025-04-07.

[57] Dennis Trautwein. Nebula. https://github.com/dennis-tra/nebula.
Accessed on 2025-04-07.

4452

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

[58] Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro,
Will Scott, Moritz Schubotz, Bela Gipp, and Yiannis Psaras. Design
and evaluation of IPFS: a storage layer for the decentralized web. In
Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM
’22, pages 739–752, New York, NY, USA, 2022. Association for
Computing Machinery.

[59] Qiyan Wang, Prateek Mittal, and Nikita Borisov. In search of an
anonymous and secure lookup: attacks on structured peer-to-peer
anonymous communication systems. In Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS ’10.
Association for Computing Machinery, 2010.

[60] Maxwell Young, Aniket Kate, Ian Goldberg, and Martin Karsten.
Practical robust communication in DHTs tolerating a byzantine ad-
versary. In 2010 IEEE 30th International Conference on Distributed
Computing Systems, pages 263–272. IEEE, 2010.

Appendix A.
Convergence of Private Routing

Lemma A.1 (Convergence of Private Routing). If KADEM-
LIA converges in ⌈log n⌉+ c1 hops, then PRIV-KADEMLIA
converges in ⌈log n⌉+ c2 hops for some constants c1, c2.

Proof. Consider only the number of hops it takes to reach
the target peer given the closest peer in each iteration of the
protocol. The argument applies equally to the next k − 1
closest peers.

If the index of the target bucket is greater than the
number of rows in the original routing table, then PRIV-
KADEMLIA returns the k closest nodes to the server. This
is equivalent to the output of KADEMLIA, and as such, does
not increase the total number of hops. Therefore, we are
only concerned with the case where the target index is less
than the total number of rows in the original RT and the
corresponding bucket is empty.

For each hop, if the target peer ID is in a non-empty
bucket, then PRIV-KADEMLIA returns the same value as
KADEMLIA. If this holds for each hop, then by assumption,
PRIV-KADEMLIA converges in ⌈log n⌉+c1 hops. Otherwise,
there are some hops for which the target peer ID is in
an empty bucket. The bound on KADEMLIA is assumed to
follow by the fact that if the target ID is in a non-empty
bucket, then the lookup procedure will return a peer which
is at least half as close (i.e., whose distance is at least one bit
shorter) than the current peer. If this is always the case, then
the procedure terminates in log n steps. Therefore, for the
algorithm to terminate in ⌈log n⌉+ c1, the number of times
that the lookup procedure does not return a peer which is at
least half as close than the current peer must be bounded by
the constant c1. That is, the number of times the target ID is
in an empty bucket must be bounded by c1. Suppose then,
that there is some constant, c1, number of hops for which the
target peer ID is in an empty bucket and PRIV-KADEMLIA
returns a different peer than KADEMLIA.

Thus, the problem reduces to the case where the fol-
lowing conditions hold: there are c1 hops wherein the target
index corresponds to an empty bucket which is less than
the total number of rows in the original routing table. In
this case, PRIV-KADEMLIA returns first the closer nodes to
itself (between the target index and the longest CPL in the

RT) and then resorts to returning nodes farther from itself
(between the target index and 0).

If PRIV-KADEMLIA returns a node closer to itself, then
this must necessarily be no farther from the target node
than the server node itself. By assumption, this occurs at
most c1 times, and so PRIV-KADEMLIA converges in at most
⌈log n⌉ + c21 hops. Otherwise, PRIV-KADEMLIA returns a
peer which is farther from itself; however, the returned peer
must have the same CPL with the target node as the peer
which would have been returned by KADEMLIA. Therefore,
this case additionally does not increase the number of hops
by more than a constant amount.

We fix a seed in our implementation, thus selecting all
peers deterministically. Since all peers within a range are
equally likely to be a given distance from the target, the
proof of convergence is identical. As the seed is independent
of the target peer ID, the privacy of the client is preserved.

Appendix B.
Correctness and Security of PaillierPIR

B.1. Preliminaries

We define our PIR protocols below, drawing upon [27],
while omitting the Setup algorithm.

Definition B.1 (PIR protocol). A PIR protocol is a triplet
of algorithms (Query,Response,Extract) over record space
D and database size n, satisfying the following:

• Query(i) → (st,qu): takes as input an index i ∈ [n]
and outputs a client state st and a query qu.

• Response(db,qu)→ ans: given the database db and
query qu, outputs an answer ans.

• Extract(st,ans) → d: given client state st and an
answer ans, outputs a record d ∈ D.

We say that a PIR protocol is correct if, for any database
db = {di} ∈ Dn and any i ∈ [n],

Pr

di = d′i

∣∣∣∣∣∣
(st,qu)← Query(i),

ans← Response(db,qu),
d′i ← Extract(st,ans)

 ≥ 1− δ,

for some negligible δ. Moreover, we say that the PIR pro-
tocol is ϵ-secure, if for all polynomial-time adversaries A
and for all i, j ∈ [n],

|Pr[A(1n,qu) = 1 : (st,qu)← Query(i)]

−Pr[A(1n,qu) = 1 : (st,qu)← Query(j)]| ≤ ϵ,

for negligible ϵ.

Definition B.2 (Semantic security). A public-key encryption
scheme PKE = (KGen,Enc,Dec) is ϵ-IND-CPA secure, if
for any polynomial-time adversary A, we have that

AdvindcpaPKE (A) :=
∣∣∣Pr[Gindcpa

PKE (A) = 1]− 1/2
∣∣∣ ≤ ϵ,

where Gindcpa
PKE is defined as in Figure 3.

4453

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

Gindcpa
PKE (A):

1 (pk, sk) $←− KGen()
2 m0,m1

$←− A(pk)
3 b $←− {0, 1}
4 c $←− Enc(pk,mb)
5 b′ ← A(pk, c)
6 return Jb = b′K

Gpirsec
PIR (A):

1 i0, i1
$←− [n]

2 b $←− {0, 1}
3 st,qu $←− Query(ib)
4 b′ ← A(qu)
5 return Jb = b′K

Figure 3: Security games for PIR and semantic security

We rely on the semantic security of the Paillier cryp-
tosystem, due to [47]. We can rewrite the definition of PIR
security in a game-based notion as follows.

Definition B.3 (PIR security). A PIR scheme PIR = (Query,
Response,Extract) is ϵ-secure, if for any polynomial-time
adversary A, we have that

AdvpirsecPIR (A) :=
∣∣∣Pr[Gpirsec

PIR (A) = 1]− 1/2
∣∣∣ ≤ ϵ,

where Gpirsec
PIR is defined as in Figure 3.

B.2. Proof of Correctness

Theorem B.1. Let M denote the composite modulus of
Paillier. For any n, ℓ ∈ N, any database db ∈ Zn×ℓ

M any
i ∈ {1, 2, · · · , n}, if

(sk, (ct,p))← PAILLIERPIR.Query(i) (1)
ans← PAILLIERPIR.Response(db, (ct,p)) (2)

d′ ← PAILLIERPIR.Extract(sk,ans) (3)

then d′ = db[i].

Proof. Given that d′,db[i] ∈ Zℓ
M , we will prove the the-

orem by proving that d′[k] = db[i][k] for every k ∈ [ℓ].
First, using the additive properties of Paillier, we see that
for every j ∈ [n],

PAILLIER.Dec(sk,ct′[j]) (4)
= PAILLIER.Dec(sk, PAILLIER.Add(ct[j],p[j])) (5)
= PAILLIER.Dec(sk,ct[j]) + p[j] (6)
= rj + (bj − rj) = bj (7)

where operations are modulo M in the above equations.
Moreover, for every k ∈ [ℓ],

d′[k] = PAILLIER.Dec(sk,ans[k]) (8)

=

n∑
j=1

db[j][k] · PAILLIER.Dec(sk,ct′[j]) (9)

=

n∑
j=1

db[j][k] · bj = db[i][k] (10)

where the last equation is due to the fact that bj = I[j = i].
Combining the result for all values of k ∈ [ℓ], we observe
that d′ = db[i].

B.3. Proof of Security

Theorem B.2. Let Query be as defined in
PAILLIERPIR.Query of Algorithm 4. For any adversary
A, we construct an algorithm B such that

AdvpirsecPAILLIERPIR(A) = AdvindcpaPAILLIER(B).

Proof. We reduce the security of the PIR scheme to the
IND-CPA security of the Paillier cryptosystem. In partic-
ular, for any adversary A attacking the PIR security of
PAILLIERPIR, we construct a new adversary B attacking
the IND-CPA security of Paillier. Let d $←− {0, 1} and
b $←− {0, 1} denote the challenge bits in the pirsec and indcpa
games respectively.

The adversary B selects two random indicator vectors ℓ0,
ℓ1 and sends these as messages to the Enc challenge which
returns c← Enc(pk, ℓb), where b is the challenge bit for B.
Now, B selects a random r $←− Zn

M from the plaintext space,
and computes two ciphertexts: r̂ = PAILLIER.Enc(pk, r),
and ct1 = PAILLIER.Add(c, r̂). B then calls A on the fol-
lowing input: qu← (ct1,−r). Upon receiving A’s decision
bit, say d′, B outputs b′ = d′.

Now the advantage of B is:

AdvindcpaPAILLIER(B) = |Pr[d
′ = 1 | b = 0]− Pr[d′ = 1 | b = 1]|.

The adversary B perfectly simulates the pirsec game to
adversary A as it provides a query consisting of a ciphertext,
ct1 = PAILLIER.Add(c, r̂), and a random plaintext pt1 =
−r, such that:
• ct1 is indistinguishable from a random ciphertext. This is

because ct1 is simply the sum of the encryption of the
ciphertext vector c and the random plaintext r:

ct1 = PAILLIER.Add(c, r̂)

= PAILLIER.Add(c, PAILLIER.Enc(pk, r))

= PAILLIER.Enc(pk, PAILLIER.Add(c, r))

Since c is indistinguishable from a ciphertext chosen at
random, and r is a plaintext chosen at random, their sum
is indistinguishable from a ciphertext chosen at random.

• ct′ = PAILLIER.Add(ct1, pt1) (Line 11) is an encryption
of the indicator vector ℓb, as follows:

ct′ = PAILLIER.Add(PAILLIER.Add(c, r̂),−r)
= PAILLIER.Add(PAILLIER.Enc(pk, PAILLIER.Add(c, r)),−r)
= PAILLIER.Enc(pk, PAILLIER.Add(c, r − r))

= PAILLIER.Enc(pk, c)

It follows that

AdvindcpaPAILLIER(B) = |Pr[d
′ = 1 | d = 0]− Pr[d′ = 1 | d = 1]|

= AdvpirsecPAILLIERPIR(A)

By the semantic security of the Paillier cryptosystem
[47], the result follows.

4454

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

Appendix C.
Security of Private Provider Advertisements

We formalize the security requirements and proof for
the private provider advertisements protocol (Algorithm 2).
The results here also apply to the protocol used for PRI-
VATEWANTHAVE, since the algorithm is the same. The
standard PIR security of the scheme (i.e., pirsec in Figure 3)
follows directly from the security of the underlying PIR
scheme, since the server only receives a PIR query for a
given row in a table. This scheme should also satisfy a
symmetric property, such that the client does not learn more
than the information for which they query. We capture this
by an indistinguishability notion, where the client cannot
distinguish between a response generated from the true
database and one generated from a random database (aside
from the record for which they queried). This notion is given
in the security game in Figure 4, and is equivalent to notions
of security for OT protocols.

Gspirsec
PIR,D(A):

1 i $←− [n], b $←− {0, 1}
2 v ← D[i],D1 ← D
3 D0

$←− {0, 1}|D| ▷ random database
4 D0[i]← v
5 st,qu← Query(i)
6 ans← Response(Db,qu)
7 b′ ← A(ans)
8 return Jb = b′K

Figure 4: Security game for symmetric PIR security

Theorem C.1. Let PRIVATEPROVIDERRECORD (PPR) be
defined as in Algorithm 2. For any adversary A against
spirsec, and any database D, we give algorithms B1, B2
such that:

AdvspirsecPPR (A) ≤ AdvPRFKDF(B1) + AdvindcpaSE (B2).

Proof. We proceed via a series of game hops. Let G0 denote
the original spirsec game for the PPR protocol for an
arbitrary database D, i.e., Gspirsec

PPR,D.
In G1, we modify G0 to use a truly random function in

place of the KDF, unless it is called on the value v (the
CID being queried). This in particular replaces the key k
with a random value k∗, unless it is derived from the CID
that is being queried. We can bound the difference by a
reduction B1 to the PRF security of KDF:

Pr[G0]− Pr[G1] ≤ AdvPRFKDF(B1).

Next, in G2, we replace the input of SE.Enc with a random
value of the same length – again, only on evaluations where
the key is already random (and not on evaluations where the
key is derived from the queried CID). Since the input key
k∗ is random, we can bound this hop by a reduction B2 to
the IND-CPA security of SE:

Pr[G1]− Pr[G2] ≤ AdvindcpaSE (B2).

Now, we can observe that regardless of the challenge bit b,
the response ans given to the adversary is the same. Hence,
A has no greater advantage than by guessing the challenge
bit b and AdvG2

PPR(A) = 0. This concludes the proof.

Appendix D.
Variants of Oblivious Expansion

The oblivious expansion procedure is described in Al-
gorithm 5. This procedure uses a substitution operation
over ciphertexts in RLWE-based schemes [23]. Recall that
plaintexts in RLWE-based cryptosystems are polynomials
p(x) ∈ Rp. The substitution operation, Sub(k, ct, pk), com-
putes the encryption of a plaintext ct′ = Enc(pt(Xk)) given
the encryption of plaintext ct = Enc(pt(X)), for a given
k ∈ Z∗

2N using an automorphism public key pk.
Angel et al. [5] generate the automorphism keys for

all substitutions of form k = 1 + N/2i for i ∈ [log2 N],
requiring log2 N keys in total. They also prove correctness
of oblivious expansion, given the substitution operation [5,
Appendix A.2]. Since the routing table only has 256 rows,
only log2 256 = 8 automorphism keys are required for RL-
WEPIR for peer routing. However, since provider routing
involves more rows, more automorphism keys are required.

de Castro et al. [17] observe that to reduce the number
of automorphism keys, we can compute the substitution of
an arbitrary k′ by successively applying the substitution k,
i.e., p(X)→ p(Xk)→ p(Xk2

)→ · · · . This approach only
requires the automorphism key for k. Since no generator can
generate the set {1 + N/2i}i∈[log2 N] ⊂ Z∗

2N , they choose
two elements in Z∗

2N that can generate the entire set. For
N = 4096, they choose 3 and 1173 as two generators.

While their approach reduces the number of required
keys, it requires more base substitutions, which impacts
performance. To find a middle ground, we can use three
keys instead of just two, and compute all the necessary
substitutions with fewer base substitutions. We conduct an
efficient grid search of the space, for N = 4096, while
minimizing the objective function stated by de Castro et al.,
that is, the total number of base substitutions required by
the oblivious expansion algorithm. We find that 3, 5, and
1167 generate the necessary substitutions that we need with
the fewest base substitutions.

Algorithm 5 Oblivious Expansion with substitution
1: procedure ObliviousExpand(pk,ct)
2: cts← [ct]
3: for i ∈ [log2 N] do
4: for j ∈ [2i] do
5: c← cts[j]
6: t← Sub(N/2i + 1, c, pk)
7: cts[j]← c0 + t

8: cts[j + 2i]← X−2i · (c1 − t)
9: return {ci}i∈[N]

4455

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This paper shows how to integrate PIR into IPFS,
allowing clients to access data without revealing to the
nodes which data they seek. It shows how to optimize each
aspect of IPFS for privacy and introduces two new PIR
algorithms that are suitable for this use case. Notes are
shared on lessons learned from integrating this privacy-
preserving functionality into an existing, non-private
codebase.

E.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

E.3. Reasons for Acceptance

• The paper establishes protocols for privately retrieiving
data in a peer-to-peer setting, an important direction
with limited previous attention.

• The paper’s PIR schemes may be useful in other con-
texts because of the tradeoffs they explore.

• In addition to the core technique, this paper discusses
practical deployment considerations and provides take-
aways, including integration challenges, node churn
effects, and potential attack vectors. These make the
solution more practical.

• The authors present a detailed comparison with existing
PIR protocols in the evaluation.

E.4. Noteworthy Concerns

1) The formal threat model is not clear.
2) The paper only considers a semihonest security model.
3) The evaluation focuses on area-under-curve for com-

munications overhead, which might miss the impact
induced on network connectivity.

4) The evaluation does not focus on I/O overhead.

4456

Authorized licensed use limited to: University of Waterloo. Downloaded on November 11,2025 at 20:03:12 UTC from IEEE Xplore. Restrictions apply.

